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ABSTRACT

Secure elements are small microcontrollers whose main purpose is to generate/store secrets
and then execute cryptographic operations. They undergo the highest level of security evalua-
tions that exists (Common Criteria) and are often considered inviolable, even in the worst-case
attack scenarios. Hence, complex secure systems build their security upon them.

FIDO hardware tokens are strong authentication factors to sign in to applications (any web
service supporting FIDO); they often embed a secure element and the FIDO protocol uses El-
liptic Curve Digital Signature Algorithm (ECDSA for short) as its core cryptographic primitive.
YubiKey 5 Series are certainly the most widespread FIDO hardware tokens, their secure ele-
ment is an Infineon SLE78.

This document shows how – finding a JavaCard open platform (the Feitian A22) based on
a similar Infineon SLE78 – we understood the Infineon ECDSA implementation, found a side-
channel vulnerability and designed a practical side-channel attack. The attack is then demon-
strated on a YubiKey 5Ci. Finally, we show that the vulnerability extends to the more recent
Infineon Optiga Trust M and Infineon Optiga TPM security microcontrollers.

Our work unearths a side-channel vulnerability in the cryptographic library of Infineon Tech-
nologies, one of the biggest secure element manufacturers. This vulnerability – that went unno-
ticed for 14 years and about 80 highest-level Common Criteria certification evaluations – is due
to a non constant-time modular inversion.

The attack requires physical access to the secure element (few local electromagnetic
side-channel acquisitions, i.e. few minutes, are enough) in order to extract the ECDSA
secret key. In the case of the FIDO protocol, this allows to create a clone of the FIDO device.

All YubiKey 5 Series (with firmware version below 5.7) are impacted by the attack
and in fact all Infineon security microcontrollers (including TPMs) that run the In-
fineon cryptographic library (as far as we know, any existing version) are vulnerable
to the attack. These security microcontrollers are present in a vast variety of secure systems
– often relying on ECDSA – like electronic passports and crypto-currency hardware wallets but
also smart cars or homes. However, we did not check (yet) that the EUCLEAK attack applies
to any of these products.

Cautionary Note: Authentication tokens (like FIDO hardware devices) primary goal is to
fight the scourge of phishing attacks. The EUCLEAK attack requires physical access to the
device, expensive equipment, custom software and technical skills. Thus, as far as the work
presented here goes, it is still safer to use your YubiKey or other impacted products
as FIDO hardware authentication token to sign in to applications rather than not
using one.
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Chapter 1

Introduction

1.1 Context

Secure elements are the root of trust of secure systems. These little pieces of hardware should
be able to generate, store and manipulate secrets while ensuring their full confidentiality and
integrity. And, more importantly, they must be able to do so even when falling inside the adver-
sary hands. To fulfill this requirement, the secure elements follow the simpler-is-safer rule: keep
the hardware simple, keep the software simple, keep the communication protocols simple. By
keeping the functionalities to a bare minimum (generate and store cryptographic keys and cer-
tificates, sign documents, verify signatures and wrap secret keys), secure elements manufacturers
must fight the endless urge of making things more powerful, more complex, more everything.

By keeping things simple, the attack surface is small and easier to audit. The most stringent
certification scheme of security devices is under the umbrella of Common Criteria (CC for short)
and was preliminary designed for smart cards evaluation 1. This evaluation, organized around
certification bodies (public institutions from the signatory countries of the SOGIS 2), is exe-
cuted by an independent and accredited ITSEF laboratory. These evaluations are tedious and
extremely time consuming, especially when aiming at the highest security level: AVA VAN 5 3.
Hence, secure elements manufacturers must face the marketing challenge of selling what might
seem outdated hardware technology 4 along with epsilonesque functionality updates but for a
important time-to-market production due to certification delays.

Integrated in a public key infrastructure, secure elements allow to safely – with unparalleled
security guarantees – authenticate a genuine product (e.g. for access control) or validate that a
piece of software was not modified (e.g. for boot purpose). Secure elements are then everywhere,
from the Trusted Platform Modules (TPM for short) that can be found managing the secure
boot of most computers (personal or server), to the banking or ID cards that can be found in
everybody’s pocket. They are also omnipresent in high-end smartphones (notably for payment
purpose), in cars and more generally in any IoT device that requires (or advertises) high level of
security.

1https://www.commoncriteriaportal.org/files/ppfiles/ssvgpp01.pdf
2https://www.sogis.eu/
3The Vulnerability Assessment Number, it goes from 1 to 5. The CC EAL level aggregates, among other

things, the AVA VAN X level
4Most common technology node for smart cards is 40nm nowadays.
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In the last decade secure elements made their way inside two new kind of products: crypto-
currency hardware wallets and FIDO hardware tokens. Both of these products claim high level of
security while being easily in the hand of an adversary: the perfect use case for secure elements.
As secure elements penetration testers, NinjaLab is obviously interested in these products and
more particularly into FIDO hardware tokens. Indeed, while undergoing the most thorough se-
curity evaluations from highly skilled ITSEF laboratories, some vulnerabilities have been found
in the past by independent security researchers. The ROCA attack [22] and the TPM-Fail at-
tack [21] are certainly the most important ones in the recent years.

In 2021 NinjaLab published A Side Journey to Titan [19, 27], reporting a side-channel vul-
nerability in the P5x family of security microcontrollers. The P5x are old secure elements from
NXP 5 manufacturer that still could be found in some products (they are slowly replaced by the
P6 and P7 families from the same manufacturer), and notably in the Google FIDO hardware
token: the Google Titan Security Key 6. Note that the Google Titan Security Key was recently
updated to support passkey 7: passwordless FIDO authentication. In [19], NinjaLab reported a
side-channel vulnerability in the Elliptic Curve Digital Signature Algorithm (ECDSA for short)
implementation of NXP that could be exploited with a physical access to the device 8 for about
10 hours (and an offline phase of about 6 hours, that can be done when the device is already
given back to the legitimate user).

In the present work, NinjaLab unveils a new side-channel vulnerability in the ECDSA im-
plementation of Infineon 9 on any security microcontroller family of the manufacturer.This vul-
nerability lies in the ECDSA ephemeral key (or nonce) modular inversion, and, more precisely,
in the Infineon implementation of the Extended Euclidean Algorithm (EEA for short). To our
knowledge, this is the first time an implementation of the EEA is shown to be vulnerable to
side-channel analysis (contrarily to the EEA binary version, e.g. [9, 2, 1]). The exploitation of
this vulnerability is demonstrated through realistic experiments and we show that an adver-
sary only needs to have access to the device for few minutes. The offline phase took us about
24 hours; with more engineering work in the attack development, it would take less than one hour.

After a long phase of understanding Infineon implementation through side-channel analy-
sis on a Feitian 10 open JavaCard smartcard, the attack is tested on a YubiKey 5Ci, a FIDO
hardware token from Yubico. All YubiKey 5 Series (before the firmware update 5.7 11 of May
6th, 2024) are affected by the attack. In fact all products relying on the ECDSA of Infineon
cryptographic library running on an Infineon security microcontroller are affected by the attack.
We estimate that the vulnerability exists for more than 14 years in Infineon top secure chips.
These chips and the vulnerable part of the cryptographic library went through about 80 CC
certification evaluations of level AVA VAN 4 (for TPMs) or AVA VAN 5 (for the others) from 2010
to 2024 (and a bit less than 30 certificate maintenances).

A coordinated responsible disclosure has been conducted with Infineon (we naturally included

5https://www.nxp.com/
6https://store.google.com/fr/product/titan_security_key?hl=fr
7See https://blog.google/technology/safety-security/titan-security-key-google-store/
8or more generally any device running the ECDSA on a P5x secure element
9https://www.infineon.com/

10https://www.ftsafe.com/Products/Card_OS
11https://www.yubico.com/blog/empowering-enterprise-security-at-scale-with-new-product-

innovations-yubikey-5-7-and-yubico-authenticator-7/
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Yubico and Feitian, as well as the certification bodies BSI 12 and ANSSI 13 in the responsible
disclosure). The responsible disclosure started on April the 19th 2024 and Infineon confirmed
(July 26th, 2024) that they have implemented and tested a patch to their library, eliminating
the attack threat.

Necessary information about FIDO protocol, ECDSA and our side-channel acquisition chain
are presented in the remainder of this introduction while the following chapters present, in all
technical details:

• a first side-channel reverse-engineering of the ECDSA implementation, and more partic-
ularly of the nonce modular inversion, leading to the identification of a sensitive leakage
(Chapter 2);

• the design of a generic and flexible side-channel attack on the Extended Euclidean Algo-
rithm (Chapter 3);

• a deeper reverse-engineering of Infineon implementation to uncover stronger sensitive leak-
ages (Chapter 4);

• the successful application of the attack on Feitian A22 JavaCard and YubiKey 5Ci prod-
ucts (Chapter 5);

• the demonstration that this vulnerability is not limited to SLE78 but also to all the subse-
quent families of Infineon security microcontrollers (Chapter 6).

Finally, Chapter 7 presents the attack impact analysis (by no means comprehensive), a simple
mitigation solution that Infineon chose to follow, several directions of research opened by this
work and finally the whole project timeline.

1.2 FIDO Hardware Tokens

FIDO Hardware tokens are USB and/or NFC devices (sometimes Bluetooth) that allow a user
to setup a factor of authentication while sign in to a web service account that supports FIDO
protocol 14 (e.g. a Google account). This authentication factor can be added to a traditional
login/password authentication (in that case our attack requires that the attacker also knows the
login/password of the target, e.g. using phishing) or as a unique factor of authentication (as
specified in the FIDO2 protocol and often refereed to as the FIDO2 Passwordless Authentication
or Passkey functionality).

For the purpose of this document, we do not need to go into the details of the FIDO protocol –
interested readers can have a look to [19] where we took some time to explain the basic principles.
Here, what we need to know can be summarized as follows 15:

• when registering a new FIDO token in the user account, an ECDSA key pair is generated
inside the device. The device sends to the remote server the public key and stores the
private key;

12https://www.bsi.bund.de/DE/Home/home_node.html
13https://cyber.gouv.fr/
14See https://www.yubico.com/works-with-yubikey/catalog/ for a list of almost all applications supporting

FIDO protocol
15The ECDSA scheme is formally described in Section 1.4
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• when signing in, the remote sever sends a challenge that is signed by the FIDO token using
the associated private key. The remote server can confirm the presence of the token by
verifying the signature (using the public key shared during the registration phase).

Side-channel attack scenario Here is a natural side-channel attack scenario (as proposed
initially in [19]):

1. the adversary steals the login and password of a victim’s application account protected
with FIDO (e.g. via a phishing attack);

2. the adversary gets physical access to the victim’s device during a limited time frame,
without the victim noticing;

3. thanks to the stolen victim’s login and password (for a given application account), the
adversary sends the authentication request to the device as many time as necessary16 while
performing side-channel measurements;

4. the adversary quietly gives back the FIDO device to the victim;

5. the adversary performs a side-channel attack over the measurements, and succeeds in ex-
tracting the ECDSA private key linked to the victim’s application account;

6. the adversary can sign in to the victim’s application account without the FIDO device,
and without the victim noticing. In other words the adversary created a clone of the FIDO
device for the victim’s application account. This clone will give access to the application
account as long as the legitimate user does not revoke its authentication credentials.

While the first version of the Google Titan security key embeds a P5x secure element from
NXP, Yubico – the leader of FIDO hardware tokens – relies on the more recent SLE78 secure
element from Infineon. One of the advantages of the SLE78 chip is that there exists a USB
version, allowing to build a USB secure token with a single chip (the SLE78 handling both the
secure element functionalities and the USB communication). This is the ”industry’s first FIDO2
certified Reference Design based on the SLE78 single-chip solution” 17 and seems pretty attractive
for designing FIDO hardware token. Also, compared to NXP P5x secure elements, the SLE78

family is more recent and has still active AVA VAN 5 (and in fact EAL 6+) CC certificates.

For the interested readers of an overview of the internals of many FIDO hardware tokens,
we strongly encourage to have a look to Victor Lomné presentation at Hardwear.io NL 2022
conference [18]. Figure 1.1 is directly taken from this presentation and shows the teardown of
all YubiKey 5 Series. All of them embed an Infineon SLE78CLUFX5000 secure microcontroller,
this will be our new target of investigation. However, the FIDO protocol does not allow to
choose (or even know) any private key generated inside the device. To ease the understanding of
Infineon implementation and the research of a vulnerability, we first need to find a product where
one can know the private key, also called a training device (this was also the direction chosen
in [19], with success). We then first look for a JavaCard open platform that embed a SLE78,
indeed JavaCard open platforms offer a richer user cryptographic API through the development
of JavaCard applets.

16This can be done while actually signing in to the remote server or not. In the former case, this would make
the FIDO counter countermeasure useless but necessitate to have either a small number of ECDSA executions to
perform or a lot of time.

17https://fidoalliance.org/tech-industry-leaders-ship-fido2-certified-solutions-to-reduce-

password-use-on-the-web/

11

https://fidoalliance.org/tech-industry-leaders-ship-fido2-certified-solutions-to-reduce-password-use-on-the-web/
https://fidoalliance.org/tech-industry-leaders-ship-fido2-certified-solutions-to-reduce-password-use-on-the-web/


Figure 1.1: YubiKey 5 Series Teardowns

1.3 Infineon SLE78

When considering only AVA VAN 5 secure elements (i.e. the most secure chips that exist), the
Infineon SLE78 family is one of the most common in the field. It has been designed for banking
and ID applications and successfully took an important market share. The microcontroller is a
proprietary design from Infineon, from the many public CC certification reports of chips from
the SL78 family 18, we have:

”The [SLE78] provides a real 16-bit CPU-architecture and is compatible to the
Intel 80251 architecture. The major components of the core system are the dual
CPU (Central Processing Units), the MMU (Memory Management Unit) and MED
(Memory Encryption/Decryption Unit). The dual interface controller is able to com-
municate using either the contact based or the contactless interface.”

Infineon SLE78, like any secure element, embeds several dedicated hardware cryptographic
co-processors, notably a modular arithmetic co-processor which can be used, though a crypto-
graphic library (we will sometimes use cryptolib, for short), to securly (and efficiently) execute
public-key cryptography like RSA or ECC. Infineon provides an optional cryptolib implementing
such cryptographic operations.

The YubiKey 5 Series are based on a SLE78 IC version M7893 B11 with Infineon EC
cryptolib version 1.03.006 19, information that can be found in the ANSSI CSPN (Certificat de
Sécurité de Premier Niveau) security target document 20.

18See e.g. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte07/

0782V5a_pdf
19M7893 B11 with EC library v1.03.006: last CC certification (EAL6+) in 2018, https://www.bsi.bund.de/

SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte08/0879V3a_pdf
20https://cyber.gouv.fr/sites/default/files/2021/09/anssi-cible-cspn-2021_18en.pdf, page 18, Table

5
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1.3.1 Feitian A22 JavaCard

When looking for JavaCard open platforms that embed a SLE78, the Feitian A22 JavaCard

product was cheap and easy to purchase (see Figure 1.2 from SmartCard Focus reseller site 21).

Figure 1.2: Feitian A22 JavaCard – Screenshot from SmartCard Focus

On a JavaCard open platform, we can develop and push our own JavaCard applet and run
all cryptographic primitives supported by the JavaCard API and implemented by the JavaCard
OS of the card. This JavaCard (or a similar one from Feitian) has been certified EAL5+ under
Common Criteria 22. This certification is from 2018 and involves SLE78 IC version M7892 B11
with Infineon EC cryptolib version 1.02.013 23.

This is not exactly the same SLE78 hardware version nor cryptolib version than the YubiKey

5 Series, we will assume it is close enough.

On Feitian A22 JavaCard, the JavaCard OS happens to follow JavaCard 2.2.2 specifica-
tions [24], we hence developed and loaded a custom JavaCard applet 24 allowing us to freely
control the JavaCard ECDSA signature engine on Feitian A22 JavaCard. More precisely, we
can load chosen long term ECDSA private keys, perform ECDSA signatures and ECDSA signa-
ture verifications.

1.4 Elliptic Curve Digital Signature Algorithm

In this section we recall some basic information about ECDSA as well as introduce the notations
we will use in this document. It is worth noting here that the FIDO protocol is specified on the
256-bit elliptic curve P256 [23], and then, w.l.o.g., all our tests are done on this curve. Hence,
for our simulations, the elliptic curve order N is that of P256 curve and the nonce k is always a
random of binary size up to 256 bits.

21https://www.smartcardfocus.com/shop/ilp/id~712/javacos-a22-dual-interface-java-card-150k/p/
22https://www.commoncriteriaportal.org/files/epfiles/SERTIT-091CRFeitianv1.0.pdf
23M7892 B11 with EC library v1.02.013: last CC certification (EAL6+) in 2020, https://www.bsi.bund.de/

SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/Reporte07/0782V5a_pdf
24Thanks notably to the great open-source project for building JavaCard applets [20]
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1.4.1 ECDSA Signature Scheme

The ECDSA signature scheme is the main target of our attack. Here is a rough sketch of the
scheme (taken from [19] with slightly different notations):

• elliptic curve E over prime field Fp, elliptic curve base point is G(x,y) of order N

• inputs: long term private key d, hash digest of the input message to sign h = H(m)

1. randomly generate a nonce k in Z/NZ

2. scalar multiplication Q(x,y) = [k]G(x,y)

3. denote by r the x-coordinate of Q: r = Qx

4. compute s = k−1(h + rd) mod N

• output: (r,s)

First Remark: We can find the nonce k from the signature (r, s) of digest h with the knowledge
of the private key d:

k = s−1(h + rd) mod N (1.1)

Inversely, knowing the nonce k is enough to find the private key d:

d = r−1(ks− h) mod N

Second Remark: An usual countermeasure against side-channel analysis is to randomize the
base point at each scalar multiplication (see [3]). So instead of computing directly the scalar
multiplication [k]G(x,y) on the affine coordinates of G, one might uses the projective coordinates
of G:

1. randomly generate a random z in Fp

2. send G(x,y) to its projective coordinates (xz, yz, z)

3. compute Q(x,y,z) = [k]G(x,y,z)

4. get the x affine coordinate of Q(x,y,z): r = x/z mod p

1.4.2 ECDSA Signature Verification Scheme

As mentioned before, one great advantage of working on the Feitian A22 JavaCard is the possi-
bility to run the ECDSA signature verification algorithm (and not only the signature algorithm as
on YubiKey 5 Series). As we will see, the signature verification algorithm requires to compute
similar operations than in the signature algorithm, this might provide additional information
on their implementation. Moreover, developers might downgrade countermeasures to improve
the execution time. Indeed, the signature verification algorithm does not involve any secret and
then side-channel or fault injection countermeasures seem useless speed reducers. For reverse
engineering however, such a countermeasure downgrade is a windfall, it provides the opportunity
to learn a lot on the implementation and its countermeasures.

Here is a rough sketch of the ECDSA signature verification scheme (taken from [19] with
slightly different notations):
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• elliptic curve E over prime field Fp, elliptic curve base point is G(x,y) and order is N

• inputs: public key P(x,y), the hash of the signed input message h = H(m)

• inputs: the signature to be verified (r, s)

1. compute first scalar k(1) = s−1r mod N

2. compute second scalar k(2) = s−1h mod N

3. first scalar multiplication Q
(1)
(x,y) = [k(1)]P(x,y)

4. second scalar multiplication Q
(2)
(x,y) = [k(2)]G(x,y)

5. compute r̄ = Q
(1)
x + Q

(2)
x mod N

6. check that r̄ = r

First Remark: One can compute k(1) and k(2) from the public inputs.

Second Remark: The two scalar multiplications can be executed in a single pass using a double
scalar multiplication approach. One way to do so is to pre-compute Q(x,y) = P(x,y) + G(x,y) and

then follow a simple double-and-add algorithm where, at each iteration, one bit of k(1) and one
bit of k(2) are processed.

1.5 Side-Channel Setup and First Observations

Let us briefly present the side-channel setup we used for our analysis.

1.5.1 Side-Channel Setup

In order to perform electromagnetic (EM for short) side-channel measurements over the two
targets, we used the following hardware parts:

• Langer ICR HH 500-6 near-field EM probe with an horizontal coil of diameter 500µm and
a frequency bandwidth from 2MHz to 6GHz with its Langer BT 706 bias-tee [15];

• Thorlabs PT3/M three axes (X-Y-Z) manual micro-manipulator with a precision of 10µm [28];

• Dino-Lite digital microscope AM4113TL [4];

• Pico Technology PicoScope 6424E oscilloscope [25], with a 500MHz frequency bandwidth,
sampling rate up to 5GSa/s, 4 channels, a shared channel memory of 4G samples max.
and 8-bit to 12-bit ADC resolution;

• LeCroy WavePro 254HD oscilloscope, with a 2.5GHz frequency bandwidth, sampling rate
up to 20GSa/s, 4 channels and a memory of 5G samples max. per channel with 12-bit
ADC resolution [16];

• Ledger Scaffold electronic board [17].
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Note that the cost of this setup is about 10ke (including the cost of the computer used for
processing side-channel measurements). The LeCroy WavePro oscilloscope with 12-bit resolution
raises the cost (it has been used for the Yubikey acquisitions) by about 30ke, but we are confident
that the PicoScope set with 8-bit ADC resolution would have been completely sufficient for the
attack.

1.5.2 YubiKey 5Ci

Accessing the SLE78 on a YubiKey requires to open the plastic case and access the logic board.
From Victor Lomné teardowns of the whole family of YubiKey 5 Series (see Figure 1.1 and
[18]), the YubiKey 5Ci seemed in good shape, so we selected it (see Figure 1.3). At the end of
this project, we wanted to estimate the difficulty for an attacker to remove the plastic case of a
YubiKey. However, by that time (two years have passed), Victor did not remember how hard it
was. From Figure 1.1 one can tell that the NFC and FIPS version of the YubiKey were quite
difficult to open and the result leads (in the case of Victor’s not so careful opening) to destroy
the product. However, for the rest, it is difficult to tell. So we bought two new YubiKey 5C from
Yubico. The package opening of these two devices is presented in Annex A. This study was done
after the YubiKey 5.7 firmware update of the 6th May 2024 that moves the firmware to a new
cryptography library 25.

We hence could validate, by the observation of the side-channel execution traces of these new
devices, that the new implementation is not vulnerable to the attack presented in this report.

Figure 1.3: YubiKey 5Ci – Teardown

The EM acquisition setup is depicted on Figure 1.4, with the correct position of the EM
probe to acquire the signal.

25https://www.yubico.com/blog/empowering-enterprise-security-at-scale-with-new-product-

innovations-yubikey-5-7-and-yubico-authenticator-7/
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Figure 1.4: YubiKey 5Ci – EM Acquisition Setup

Figure 1.5 shows a side-channel execution trace of an ECDSA signature acquired with the
above setup. The acquisition is triggered directly from the EM signal, on a pattern present
at the beginning of the EM activity of the command processing the authentication request

message of the FIDO protocol.

Figure 1.5: YubiKey 5Ci – EM Traces – ECDSA Signature

1.5.3 Feitian A22 JavaCard

To communicate and acquire both power and EM side-channels from the Feitian A22 JavaCard,
we use the Ledger Scaffold electronic board [17]. It provides several features really useful for
side-channel attacks:

• native support of ISO7816, with possibility to easily spy all digital signals of the protocol
thanks to SMA connectors (RESET, CLOCK and DATA);

• triggering capabilities easily configurable either on the APDU header processing, or on the
APDU command processing;

17



• power measurement capabilities thanks to a clean PCB design, and a potentiometer al-
lowing to manually adapt the gain of the measured power consumption thanks to a screw.
Furthermore it is possible to activate 1kOhm resistors placed in serial on the ISO7816
digital signals, allowing to reduce the activity of the ISO7816 clock in the measured power
consumption;

• the Ledger Scaffold is physically made of two parts: one motherboard (main part of Scaf-
fold including the FPGA driving the board, all the electronic circuitry and the different
connectors) and one daughter board (used to connect the target, and being interchange-
able). Thus one can easily develop new daughter boards, for instance for having access to
the different sides of the target. This is what NinjaLab has done with a custom smartcard
daughter board that gives access to the opened side of the smartcard (see Figure 1.6).

The full setup is shown on Figure 1.6, to access the die we simply remove the white plastic
of the smartcard above the die with a scalpel, we hence have access to its front side. The right
subfigure shows the EM probe position over the die.

Figure 1.6: Feitian A22 JavaCard – EM Acquisition Setup

Figure 1.7 depicts a side-channel execution trace of an ECDSA signature acquired with the
above setup. The acquisition is triggered thanks to the Scaffold board on the last byte of the
ECDSA signature APDU command sent. On the figure, we identified the three major steps of
ECDSA signature:

1. Initialization and generation of nonce k and random projective coordinate z

2. Scalar multiplication Q(x,y,z) = [k]G(x,y,z)

3. Computation of the signature (r, s) from Q(x,y,z), h, d, k
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z,k Q = [k]G(x,y,z) (r, s)

Figure 1.7: Feitian A22 JavaCard – EM Traces – ECDSA Signature

The Feitian A22 JavaCard and YubiKey 5Ci ECDSA signature EM activities look very
similar, we will then work on Feitian A22 JavaCard and try to find a weakness in Infineon
implementation. After fruitless attempts to find a vulnerability in the scalar multiplication, we
focused our effort on the end of the computation and more precisely the nonce modular inversion
because of a surprisingly not constant-time operation.

1.5.4 Focus on the Nonce Modular Inversion

Figure 1.8 is a zoom into the end of the ECDSA signature EM activity. The computation of
(r, s) from [k]G(x,y,z), k, h, d amounts to:

• r = z−1x mod p

• s = k−1(h + rd) mod N

It seems pretty obvious to us that the two similar shaped operations (identified on Figure 1.8)
correspond to the two modular inversions (which are the most complicated operations in the
computation of (r, s)). Moreover, when observing several ECDSA signature executions, these
operations seem to have different execution times.

z−1 mod p k−1 mod N

Figure 1.8: Feitian A22 JavaCard – EM Traces – ECDSA Signature – (r, s) Computation

This observation is the beginning of a journey that will take two years to complete and a lot
of efforts and disappointments but finally a success. This document tries to report this journey
in its many details.
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Chapter 2

Reverse-Engineering of the

Modular Inversion

As mentioned in Chapter 1, we decided to analyze the nonce modular inversion of the Infineon
ECDSA implementation due to the presence of a timing leakage. A timing leakage does not
necessary mean that there is a vulnerability but it is surprising for such a sensitive operation.
Indeed, revealing even a small number of bits of the nonce for several ECDSA signatures is enough
for a complete key-recovery attack thanks to lattice reduction techniques (initially proposed in
[10] and applied in many practical attacks since).

2.1 ECDSA Signature Traces

First, 1000 EM side-channel traces of ECDSA signature are acquired with the Feitian A22

JavaCard setup. For completeness, the acquisition details are given in Table 2.1. 1000 EM
side-channel traces of the full ECDSA signature execution are acquired in about 7 hours.

2.1.1 Acquisition Campaign

operation ECDSA signature
equipment PicoScope 6424E, Langer ICR HH 500-06
inputs Messages are random, Key is constant (randomly chosen)
number of operations 1000
length 120ms
sampling rate 5GSa/s
samples per trace 600MSamples
channel(s) EM activity
channel(s) parameters DC 50ohms, [−120, 80]mV
file size 600GB
acquisition time about 7 hours

Table 2.1: Acquisition parameters on Feitian A22 JavaCard – ECDSA Signature
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Figure 2.1 shows a single side-channel execution trace, where the modular inversion patterns
are identified. We suppose that the second pattern corresponds to the nonce inversion and the
first one (the closest to the scalar multiplication) relates to the inversion of the third projective
coordinate of the resulting point Q. It just makes more sense but the operations could be done
the other way around.

zoom

zoom

z,k Q = [k]G(x,y,z) (r, s)

z−1 mod p k−1 mod N

Figure 2.1: Feitian A22 JavaCard – ECDSA Signature – Full Trace (Top) - (r, s) Computation
(Middle) - k−1 mod N Computation (Bottom)

2.1.2 Side-Channel Analysis

Now that we have many executions for various values of the nonce k (which is known here since
the private key d is known, thanks to equation 1.1), let us look into the EM signal. Figure 2.2
bottom subfigure shows that the computation is an iterative process. Moreover, the process is
regularly paused (as we can see on the figure). These pauses are quite easy to automatically
detect (specially because they occur at a pretty stable period), the two black dots on the figure
illustrate this automatic detection.
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zoom

k−1 mod N

Figure 2.2: Feitian A22 JavaCard – ECDSA Signature – k−1 mod N Computation (Top) -
Zoom on Few Iterations (Bottom)

Figure 2.3 shows the result of this detection over the whole operation (top subfigure). Our
first step is simply to remove these pauses as we suspect they are not related to the computation
but to regular interrupts of the microcontroller. The second subfigure depicts a single subtrace
(corresponding to the suspected modular inversion) after the removal of all pauses.
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k−1 mod N

Figure 2.3: Feitian A22 JavaCard – ECDSA Signature – k−1 mod N Computation – Interrup-
tions Detection (Top) - Cleaned Trace (Bottom)

The next step is to detect all the operation iterations, this is done over all the 1000 ECDSA
executions. The result is illustrated on Figure 2.4 first subfigure where each iteration is detected
through the research of two anchors: the blue and black dots (see the second subfigure). This
detection process is simply based on the amplitude of the signal and approximate length of an
iteration. We cannot tell if the detection works perfectly over the whole set of 1000 traces but
random visual checks over some traces make us pretty confident that we are not too wrong. One
can also remark that some iterations are longer than others (or are preceded by pauses), as we
can see in the middle of the second subfigure.
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k−1 mod N

zoom

Figure 2.4: Feitian A22 JavaCard – ECDSA Signature – k−1 mod N Computation – Iterations
Detection (Top) - Zoom on Few Iterations (Bottom)

Now we have a precise estimate of the number of iterations of a modular iteration, we can
validate that this number changes from one ECDSA execution to the other. When considering
a modular inversion that is not constant time, our first hypothesis is the Extended Euclidean
Algorithm (EEA for short).

2.1.3 First Hypothesis: Extended Euclidean Algorithm

Algorithm 1 recalls the computation of a modular inversion with the textbook EEA (there are
many versions of the EEA and notably the binary version, but here the number of iterations
observed would better match the classical EEA). If our hypothesis is correct, then the number
of iterations detected previously should match the Algorithm 1 while loop iteration number (for
the right inputs (k,N), where k is the nonce and N is the order of the elliptic curve). However,
while the iteration count of EEA(k,N) (based on Algorithm 1) is always close to the number of
detected iterations in the side-channel traces, it does not match exactly.
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Algorithm 1: Extended Euclidean Algorithm for Modular Inversion

Input : v, n: two positive integers with v ≤ n and gcd(v, n) = 1
Output: v−1 mod n: the inverse of v modulo n

1 r0, r1 ← n, v
2 t0, t1 ← 0, 1
3 while r1 ̸= 0 do
4 q ← div(r0, r1)
5 r0, r1 ← r1, r0 − q.r1
6 t0, t1 ← t1, t0 − q.t1
7 end
8 if t0 < 0 then
9 t0 ← t0 + n

10 end
11 return t0

When plotting the distribution of the number of iterations over the 1000 observed operations
with regard to the distribution of the number of iterations of random calls to EEA(x,N) with x
a random value of same size as k, one can tell that the distribution matches. This is illustrated
on Figure 2.5, confirming that we are observing the execution of an EEA, but not with the value
of k.

Figure 2.5: Feitian A22 JavaCard – ECDSA Signature – k−1 mod N Computation – Distribu-
tion of the Number of Iterations – Observations (Blue) - EEA Simulations (Orange)

After checking that the first modular inversion pattern was not the correct one (the inversion
of z and k could have been done in the unnatural way), the next hypothesis is the presence of a
side-channel countermeasure:
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Hypothesis: k is blinded before its inversion.

This would make an attack much harder (and maybe impossible if the mask is large enough).
Validating this hypothesis seems quite far-reaching, we rather first validate once for all that the
identified operation is really a modular inversion using EEA before going deeper in this direction.
One way to do so is to study the ECDSA signature verification execution.

2.2 ECDSA Signature Verification Traces

The ECDSA signature verification scheme involves the modular inversion of a public value (see
the s−1 mod N operation in the introductory chapter, Section 1.4.2). Let us bet that the devel-
oper did not protect this operation since it does not involve any secret.

2.2.1 Acquisition Campaign

The acquisition campaign for the ECDSA signature verification operation is quite similar to that
of the ECDSA signature operation, full details are given in Table 2.2. A single side-channel
execution trace is displayed in Figure 2.6.

operation ECDSA signature verification
equipment PicoScope 6424E, Langer ICR HH 500-06
inputs Messages are random, Signature generated from a constant Key
number of operations 1000
length 160ms
sampling rate 5GSa/s
samples per trace 800MSamples
channel(s) EM activity
channel(s) parameters DC 50ohms, [−120, 80]mV
file size 800GB
acquisition time about 7 hours

Table 2.2: Acquisition parameters on Feitian A22 JavaCard – ECDSA Signature Verification

Figure 2.6: Feitian A22 JavaCard – ECDSA Signature Verification – Full Trace
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2.2.2 Side-Channel Analysis

The analysis of the side-channel traces tells us the following (as illustrated in Figure 2.7):

• the first long operation is a secure scalar multiplication (very similar to the one observed
in the ECDSA signature traces), we do not know its purpose. Maybe to check that the
point P is on the curve (even though this seems a bit overkill);

• knowing the values k(1) and k(2) and observing the sequence of doubling and addition
operations, it was easy to confirm that the last operation is a double scalar multiplication
based on an unbalanced (i.e. naive) double-and-add algorithm;

• between the two scalar multiplication operations lies two modular inversion patterns similar
to those of the signature algorithm. The first one is certainly owned by the previous scalar
multiplication while the second one should be the computation of s−1 mod N .

zoom

zoom

[q]P(x,y,z) = O Q(x,y) = [k(1)]G(x,y) + [k(2)]P(x,y)

z−1 mod p s−1 mod N

Figure 2.7: Feitian A22 JavaCard – ECDSA Signature Verification – Full Trace (Top) - Zoom
Between the Scalar Multiplications (Middle) - s−1 mod N Computation (Bottom)
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After the cleaning process of removing the interrupts (see Figure 2.8) and detecting each
iteration (as illustrated in Figure 2.9) we could validate that the number of iterations perfectly
matches the EEA number of iterations. This confirms without any doubt that the observed process
is the EEA and let the hypothesis of a blinding countermeasure in the signature algorithm open.

s−1 mod N

Figure 2.8: Feitian A22 JavaCard – ECDSA Signature Verification – s−1 mod N Computation
– Interruptions Detection (Top) - Cleaned Trace (Bottom)
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s−1 mod N

zoom

Figure 2.9: Feitian A22 JavaCard – ECDSA Signature Verification – s−1 mod N Computation
– Iterations Detection (Top) - Zoom on Few Iterations (Bottom)

Before coming back to the signature algorithm, we could relate the large iterations occurrence
(as identified by the orange boxes on Figure 2.9, second subfigure) to the inner values of the EEA

computation: the iteration is large if (and only if) the binary length difference between r0 and
r1 (as computed in Algorithm 1, line 4) is larger than 5. In all the following we will denote the
binary length difference between r0 and r1 as:

∆r0,r1 = len(r0)− len(r1).

2.2.3 A Timing Leakage

We have seen that the computation length of the inner iterations of the EEA is related to the
value ∆r0,r1 taken at the beginning of the iteration: the iteration is larger when ∆r0,r1 > 5.
In fact, the timing leakage is stronger than that. Figure 2.10 shows four consecutive iterations
(none of them are large, i.e. ∆r0,r1 ≤ 5), two observations can be made:

• Odd versus Even iterations are different, we will have to treat them differently (and have
no explanation for this observation);

• a small part at the beginning of each iteration is varying in length (identified with orange
boxes).
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Even Odd Even Odd

Figure 2.10: Feitian A22 JavaCard – ECDSA Signature Verification – s−1 mod N – Four Con-
secutive Iterations

Thanks to the ∆r0,r1 > 5 timing leakage that stands out clearly, we easily found out that
the execution time is directly proportional to the value ∆r0,r1 as displayed on Figure 2.11 where
iterations are synchronized and regrouped with constant values of ∆r0,r1 .
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∆r0,r1 = 0

∆r0,r1 = 1

∆r0,r1 = 2

Figure 2.11: Feitian A22 JavaCard – ECDSA Signature Verification – 100 Superposed Odd
Iterations – ∆r0,r1 = 0 (Top) - ∆r0,r1 = 1 (Middle) - ∆r0,r1 = 2 (Bottom)

2.3 Reverse-Engineering of the Modular Inversion Coun-

termeasure

Let us now get back to the blinding countermeasure hypothesis and try to confirm and better
understand it.

2.3.1 Hypothesis

A simple and cost-effective way to protect the modular inversion of the nonce in ECDSA is to use
a multiplicative mask. Hence, instead of computing directly the inverse of k, one can compute
the inverse of k′ defined as:

k′ = m× k mod N,

where m is a non-null positive integer. Once inverted, k−1 mod N can be easily computed from
k′−1 mod N by another modular multiplication by m.
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This countermeasure seems really interesting because it only costs 2 modular multiplica-
tions (a quite cheap operation when the secure microcontroller embeds a modular arithmetic
co-processor) to protect a modular inversion (a much more expensive operation). Also, if we
consider that m is generated with a similar entropy than k itself, retrieving k′ by side-channel
analysis would provide zero information about the nonce value k and then the attack would be
meaningless. However, the real cost of the countermeasure lies in the generation of m and if the
random number generator is expensive, it might be tempting to reduce the size of m.

Now, let us suppose that Infineon developers decided to reduce the length of m to something
small enough to be brute-forced, then by retrieving k′ by side-channel analysis one could brute
force the value of k and then recover the ECDSA long term private key. So let us hope for the
best (adversary-wise) and try to validate this.

2.3.2 Brute-force Experiments

We build an experiment that would validate that the multiplicative mask is small:

Since the private key is known on the Feitian A22 JavaCard setup, we can compute, for
each ECDSA execution, the nonce value k (as per equation 1.1). We are looking for the value
of the mask m such that k′ = m × k mod N . To discriminate the possible values of m we have
the information extracted from the side-channel execution traces of EEA(k′, N). In a preliminary
test, we decided to test all non-zero values of m of binary length 32 or less. We then select a
mask candidate m if EEA(m × k mod N,N) has the exact same number of iterations than the
side-channel execution trace of EEA(k′, N) and if the number and positions of the large iterations
(i.e. iterations for which ∆r0,r1 > 5) also matche. We apply this process to the first 10 traces of
the signature acquisition campaign. At the end of this 32-bit brute-force, we end-up with:

• 3 mask candidates for the first trace;

• 38035 mask candidates for the 10th trace;

• a unique mask candidate for the other 8 traces.

The 10th trace only shows a single large iteration (∆r0,r1 > 5), the first trace has 4 such
iterations, all other traces have 4 or more large iterations. Since our mask detection is mainly
based on the position of these large iterations, it makes quite sense that the more an EEA execu-
tion shows large iterations, the fewer mask candidates are left. The fact that, for all 10 traces,
there exists at least one mask candidate left is very promising and comforts ourselves in the
assumption that Infineon uses a multiplicative mask countermeasure with a 32-bit mask.

Now we have seen in the previous section that a finer-grain timing leakage appears for each
iteration. We can use this leakage to try and discriminate one mask candidate among several.
To do so, we automatically identify the timing leakage start and end positions (as illustrated
in Figure 2.11) for each iteration of the first 10 ECDSA side-channel execution traces. This
detection, without being perfect, works well enoug for our test. We then have, for all iterations,
the length (in time samples) of the timing leakage area. We previously observed that this area
length is proportional to the value ∆r0,r1 . A good way to capture this linear relation is to use
the Pearson correlation [8], we then compute the Pearson correlation ρ between the sequence
of ∆r0,r1 values computed from the execution simulation of EEA(m × k mod N,N) for a mask
candidate m and the observed sequence of time sample lengths extracted from the side-channel
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execution trace of EEA(k′, N) (and denoted {Li}0<i≤n for an n iterations EEA).

Figure 2.12 displays the Pearson correlation results for each candidate of each trace 1 (each
trace has a different color, e.g. the blue dots represent the 10th trace with all its 38K mask
candidates). It appears clearly that, for each trace, a single mask candidate stands out clearly
with a high correlation (ρ > 0.7) while all other candidates stays well below ρ < 0.5.

Figure 2.12: Feitian A22 JavaCard – Modular Inversion Multiplicative Mask Brute Force –
Pearson Correlation Results ρ({∆r0,r1 i

}0<i≤n, {Li}0<i≤n)

This experiment, without being a formal proof, finishes to convince us that we have under-
stood the masking countermeasure of Infineon to protect the modular inversion of the nonce.

2.4 Conclusions

Algorithm 1 is validated, the nonce is blinded with a multiplicative mask of size 32 bits (and
odd). Moreover, we identified a timing leakage proportional with ∆r0,r1 = len(r0)− len(r1) (r0
and r1 appearing in line 4 of Algorithm 1). In the next chapter, we will consider a side-channel
attacker able to soundly (i.e. without error) extract the value ∆r0,r1 for each and every iteration
of an EEA execution.

1We randomly spread the correlation results over the y-axis following a Gaussian distribution of mean 0 and
standard deviation 10−2 for illustration purpose.
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Chapter 3

Input-Recovery Attack on the

Extended Euclidean Algorithm

Let us recall the EEA algorithm here:

Algorithm 1: Extended Euclidean Algorithm for Modular Inversion (repeated from
page 25)

Input : v, n: two positive integers with v ≤ n and gcd(v, n) = 1
Output: v−1 mod n: the inverse of v modulo n

1 r0, r1 ← n, v
2 t0, t1 ← 0, 1
3 while r1 ̸= 0 do
4 q ← div(r0, r1)
5 r0, r1 ← r1, r0 − q.r1
6 t0, t1 ← t1, t0 − q.t1
7 end
8 if t0 < 0 then
9 t0 ← t0 + n

10 end
11 return t0

This algorithm is applied to the input pair (k′, N), where k′ is the unknown masked nonce
and N is the public elliptic curve order (of elliptic curve P256 [23] for our tests).

3.1 First Observations

In the previous chapter, we identified a timing leakage that gives us, for each iteration of the
EEA, the binary length difference between r0 and r1 (appearing as inputs of the div call in Al-
gorithm 1, line 4) denoted ∆r0,r1 . Let us take a step back and consider the more general case
where the side-channel adversary is able to recover a function f of the input-pair (r0, r1) for each
iteration of the while loop.

It is quite easy to see that if the function f outputs enough information then an attacker
would be able to recover the two inputs (v, n) of the EEA. For instance, a simple case is when
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the attacker is able to recover the quotient q (appearing in Algorithm 1, line 4) of the euclidean
division of r0 by r1 without error (i.e. f(r0, r1) = r0

r1
= q). From the sequence of quotients

{qi}0<i≤ℓ, there is a simple way to recover the two inputs (v, n) of the EEA:

(

n
v

)

=

ℓ
∏

i=1

(

qi 1
1 0

)(

1
0

)

In fact, since one of the two inputs is already known to the attacker (n = N , the order of
the elliptic curve), one can do even better than that. We only need about half of the quotient
sequence {qi}0<i≤⌈ ℓ

2 ⌉
as they are enough to estimate a good approximation of the rational number

n
v

using continued fractions:
n

v
∼ q1 +

1

q2 + 1
q3+

1

...

Since n is known, v can be correctly estimated by computing the right hand side of the equation
(up to q⌈ ℓ

2 ⌉
) and estimating the value of v with a small margin of error 1.

However the above solution requires that the attacker has, at least, the knowledge of half of
the quotient sequence. Also, this information should not contain too many errors: a brute force
could cope with only a small amount of erroneous or missing quotients.

In the case where the attacker has less information (as in our case where f(r0, r1) = ∆r0,r1)
or an information that does not contains the quotient value, there is no clear way to mount
an attack. Worse, if the attacker has access to more information than the quotient value, the
solution is to reduce this information to the quotient value and somehow loose the extra infor-
mation that could be helpful to handle some errors. When considering side-channel attack, the
information is often noisy (even with timing leakages) and handling errors is usually critical for
the practicality of the attack.

We then created a more flexible attack process that can take a large class of leakage functions
f . It is based on the following assumption: the leakage function f(r0, r1) can be properly esti-
mated with the knowledge of the most-significant-bits (msb for short) of r0 and r1. For instance
this is the case for f(r0, r1) = ∆r0,r1 or f(r0, r1) = q where, for long integers r0, r1, only their
msb will dictate the output of f (with high probability).

With this assumption, an attacker would be able to run through all the possible values that
the s-msb of k′ can take (i.e. 2s candidates) and, for each of them, predict the leakage (given a
leakage function f) for the few first iterations of EEA(k′, N). By comparing the predicted leakage
to the observed leakage, the attacker might descriminate a small enough set of candidates. The
ℓ remaining candidates are then extended with all possible values for the next s bits, creating
a new list of candidates of size 2sℓ, each candidate being of length 2s bits. The prediction can
now go further through the iterations of EEA(k′, N), and so on.

Before materializing this idea into an attack process, let us first recall the Jebelean’s stop
condition in the following Theorem 1. It will be very useful in telling us, for each candidate msb
of k′, up to which EEA iteration we can predict meaningful leakage. In Theorem 1:

1This solution was actually proposed by Franck Rondepierre and Guénaël Renault from ANSSI, during the
responsible disclosure.
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• the quotient sequence refers to the EEA quotient sequence;

• the {(ai, ai+1)} pairs sequence are the value taken by (r0, r1) in Algorithm 1;

• the {(vi, vi+1)} pairs sequence are the value taken by (t0, t1) in Algorithm 1;

• the {(ui, ui+1)} pairs sequence are the second Bézout coefficients sequence.

Theorem 1 ([14]’ Theorem 1) Let a > b > 0 be integers. Then
the k-length quotient sequences of (a, b) and (a2h + A′, b2h + B′) match

for any h > 0 and any A′, B′ < 2h

if and only if, for all i ≤ k

ai+1 ≥ −ui+1 and ai − ai+1 ≥ vi+1 − vi and i even
or

ai+1 ≥ −vi+1 and ai − ai+1 ≥ ui+1 − ui and i odd

From Theorem 1, one can easily tell when the EEA on the s-msb of (k′, N) coincide (at least
in terms of quotient sequence) with the EEA on (k′, N) without needing more knowledge than
the s-msb of (k′, N).

3.2 Building a Generic Attack Algorithm

From the above observations, a basic attack algorithm can be sketched.

1. Select the brute-force parameter: a positive integer m.

2. Initialize an integer t = m and a list of integers L = {0}.

3. Denote by Nt the integer composed by the t most-significant-bits of N and L′ an empty
list.

4. For all x ∈ L, for all g ∈ {0, · · · , 2m − 1}:

(a) v = x.2m + g;

(b) execute the EEA on (Nt, v) and, iff Nt < N , stop when the Jebelean’s stop condition
is met;

(c) for each executed iteration of the truncated EEA, predict the leakage and compare it
to the extracted leakage;

(d) if the comparison is successful, add v to L′.

5. If Nt = N (i.e. t equals the bit length of N) then return L′,
else t is increased by m, L takes L′ and go back to step 3.

Figure 3.1: A Generic Input-Recovery Side-Channel Attack on the EEA

Although arguably lacking elegance, the above attack algorithm has many advantages:

• it is completely generic with respect to the extracted leakages (one does not need to relate
the leakage to the EEA inputs as it was necessary with the previous analytical approach);
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• the matching process between the extracted leakage and the predicted leakage can be
easily done so that some reasonable margin of errors is acceptable (in exchange to some
computational effort). For instance, if for an iteration the leakage information is not
extractable (say the side-channel trace is not readable), all v candidates for this iteration
are accepted;

• at step 3, when t equals the bit length of n, the algorithm has merely checked the first half
of the EEA iterations 2. The second half is then checked in a single pass and then, with
overwhelming probability, a unique element is added to L′ during this last pass (or none,
if there are too many errors in the extracted leakages) 3.

Let us now remark that this algorithm is more efficient as m is small. Intuitively, one can
see that a small m provides a finer grain: by setting m = 1, the algorithm will remove wrong
candidates as soon as possible and avoid unnecessary calls to the truncated EEA. Our simulations
show that for small values of m, the impact is not huge but gets more and more important as m
increases (m = 8 is already much more expensive than m = 4). So on the one hand, m = 1 should
be the most interesting choice but on the other hand, the 2m inner loop (step 4.) is the easiest
part of the algorithm for parallelization. Hence, in our practical tests, m = 4 was the best choice.

This basic attack algorithm has however three issues that all come from the use of the
Jebelean’s stop condition:

• in [14, Theorem 1], the (a, b) integers must be strictly greater than zero. In our attack
algorithm this means that – for the first iteration – m must be greater than the binary
length difference between the two inputs (k′, N) of the EEA, denoted ∆N,k. This binary
length difference might not be known (depending on the leaked information), a first solution
would be to set m to be large enough so that it has great chances to be larger than ∆N,k.
However, as mentioned before, m should stay small (and is set to 4 in our tests). Our
solution will then be to test the attack iteratively for an increasing value of ∆N,k and handle
the first iteration differently than the others (with a larger value for m when necessary);

• for specific choices of (a, b) the Jebelean’s stop condition is met too soon and the leakage
is not tested against the prediction. This artificially increases the candidate set with
pathological cases and then the overall attack complexity. Since the attack algorithm is
virtually scanning over all possible values of the unknown EEA input k′, these pathological
cases will necessary arise. This happens when a = b; when the case arises, we simply remove
a candidate v if v = Nt for t > 232 (we could increase to 264). The other pathological case
is when very large quotients appear at the end of the quotient sequence. Similarly to the
first case, we can add a threshold Tq on the quotient value and remove a candidate that
creates a quotient sequence where a quotient is larger than Tq. Another, more subtle, way
to bypass this issue is to select the next candidate based on its last quotient value (the
smallest first). This is what is presented in the next algorithm 2;

• Jebelean’s stop condition ensures that the quotient sequence is preserved. However, when
dealing with leaked information different from the quotient values, (e.g. ∆r0,r1), this might
not be enough. This is the most problematic issue of using Jebelean’s stop condition and
we did not find a perfect solution for that. Our idea is to estimate when we are far from

2This is actually a corollary of [14, Theorem 1] since, during the EEA (see Algorithm 1), |t1| will become
greater than r1 around the middle of execution and then the stop condition will always be met, whatever the
number of msb considered.

3This observation has led us to actually use a depth-first version of the attack algorithm.
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the stop condition with a simple metric. If we are far enough, one can check the leakage
against the prediction. Otherwise, if we are too close to the stop condition, then we can
only rely on the quotient values: we extract the list of all possible quotient values that
could lead to the observed leakage and check if the predicted quotient is in the list. For
instance, for a leakage function f(r0, r1) = ∆r0,r1 , all predicted quotients of binary length
∆r0,r1 or ∆r0,r1 + 1 are accepted.

Taking all these different remarks into account, the following Algorithm 2 describes the full
attack process. It is based on the so called Truncated Extended Euclidean Algorithm, defined in
Algorithm 3, that stops when the Jebelean stop condition is met.

Algorithm 2: A Generic Attack Algorithm

Input : {mstart,mnext}: a pair of brute-force parameters,
Input : {Li}0≤i<n: the leaked information from the execution of EEA(k′, N)
Input : f(.): the leakage function
Output: c: a candidate for k or Error if none found

1 L← {(0, 0,−1)}
2 while True do
3 (c, t, q)← L.pop() // pop the first element of the list L
4 if t = len(N) then // len(x) returns the binary length of x
5 return c
6 else if t = 0 then
7 s,m← 1,mstart

8 else
9 s,m← 0,min(mnext, len(N)− t)

10 end
11 Nt+m ← msbt+m(N) // t + m msb of N

12 for x ∈ [start, 2m] do
13 v ← c.2m + x
14 success, q̂ ← TEEA(v,Nt+m, {Li}0≤i<n, f) // call to Algorithm 3

15 if success then
16 Add tuple (v, t + m, q̂) to L such that L stays sorted w.r.t. last element of the

tuple (q̂).
17 end

18 end

19 end
20 return Error
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Algorithm 3: Truncated Extended Euclidean Algorithm

Input : v: a candidate integer
Input : Nt: the t msb of N
Input : {Li}0≤i<n: the leaked information from the execution of EEA(k′, N)
Input : f(.): the leakage function
Output: success: True if the leakage matches the prediction, False otherwise
Output: q̂: the last quotient of the predicted quotient sequence

1 t← len(Nt) // len(x) returns the binary length of x
2 T ← len(N)
3 if Nt = v then
4 if t > 32 then return (False, -1)
5 else return (True, 1)

6 end
7 r0, r1 ← Nt, v
8 t0, t1 ← 0, 1
9 s0, s1 ← 1, 0

10 step← 0
11 Failure← 0
12 while r1 ̸= 0 do
13 q ← r0//r1

14 L̂ ← f(r0, r1) // Leakage Prediction from (r0, r1)
15 r0, r1 ← r1, r0 − q.r1
16 t0, t1 ← t1, t0 − q.t1
17 s0, s1 ← s1, s0 − q.s1
18 if t < T then // Test Jebelean’s stop condition

19 if step mod 2 = 1 then
20 stop cond← not ((r1 ≥ −s1) and ((r0 − r1) ≥ (t1 − t0)))
21 stop dist← min(len(r1)− len(−s1), len(r0 − r1)− len(t1 − t0))

22 else
23 stop cond← not ((r1 ≥ −t1) and ((r0 − r1) ≥ (s1 − s0)))
24 stop dist← min(len(r1)− len(−t1), len(r0 − r1)− len(s1 − s0))

25 end
26 if stop cond then
27 return (True, q)
28 end

29 end
30 if stop dist > Thr dist then

31 if L̂ ≠ Lstep then Failure← Failure + 1
32 else
33 Lq ← {q̂ s.t. Lstep} // List all possible quotients compatible with Lstep

34 if q /∈ Lq then Failure← Failure + 1

35 end
36 if (t < T and Failure > Thr Failure FH) or (t = T and Failure > Thr Failure)

then return (False, -1)
37 step← step + 1

38 end
39 if step = n then return (True, 0)
40 else return (False, -1)
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In Algorithm 2, adding a new tuple to the list is done such that the list stays sorted with
respect to the last quotient value. For equal values of quotients, the strategy is last added first
out, but it is not clear if this is the best approach.

In Algorithm 3, three threshold values must be chosen (the Thr dist, line 30, the
Thr Failure FH and Thr Failure, line 36). The choice of these thresholds is clearly dependent
on the nature (and quantity) of leaked information. In all our tests, we set Thr dist value to 8,
which seems to be enough in our cases. Thr Failure FH, the number of accepted errors during
the first half for the EEA iterations was set to 0 while Thr Failure, the total number of accepted
errors was arbitrary set to 10 (as mentioned before, many leakage extraction errors in the second
half of the EEA execution can be tolerated).

3.3 Simulation Experiments

With the above attack process we can simulate the attack on random inputs k′ of size 256 bits. We
did that assuming the leakage of the quotient sequence (i.e. at iteration i, f(r0, r1) = Li = qi).
The attack process was always successful (which is not so surprising since we already have seen
that the quotient sequence if enough to recover the EEA inputs), the complexity of the attack is
given with respect to the number of calls to the Truncated EEA in Figure 3.2. In about 500 tests,
the observed attack complexity ranges from 220 to 230 calls. Interestingly, this complexity seems
to be directly related to the maximum quotient value appearing in the first half of the quotient
sequence, more precisely the log complexity seems proportional to the log of the maximum
quotient value.
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Figure 3.2: Simulation of the Generic Attack – Li = qi

Of course, we also simulated the attack assuming f(r0, r1) = ∆r0,r1 . None of these simula-
tions ever ended: the attack with less information than the quotient seems out of reach of our
computational power.

3.4 Conclusions

We have built a generic side-channel attack algorithm targeting the EEA. However, the identified
leakage does not seem to be enough for a practical input recovery. We let for future work the
theoretical analysis of this attack algorithm and the study of the minimum quantity of leaked
information necessary for the attack to succeed in practice.

So while all this was incredibly fun to do, at this point it seems a complete waste of our time!

Fortunately this attack process was not built in vain. Indeed we eventually were able to
improve our understanding of the side-channel traces and Infineon EEA implementation. This is
described in the next chapter.
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Chapter 4

Full Reverse-Engineering of

Infineon EEA

While working on a generic side-channel attack process, we realized that the identified leak will
not be enough for the attack to work in practice. We then came back to the side-channel traces
and looked for additional leakages.

4.1 More Timing Leakages

In fact, it was pretty clear that other timing leakages were present in the traces. Figure 4.1 first
subfigure shows 100 superposed subtraces corresponding only to odd iterations of EEA executions
where ∆r0,r1 = 2. Similar behavior can be found with the even iterations. One can see that, if
the beginning of the subtraces are correctly aligned, the end of the iteration is desynchronized.
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∆r0,r1 = 2 zoom

Figure 4.1: Feitian A22 JavaCard – ECDSA Signature Verification – ∆r0,r1 = 2 – 100 Super-
posed Odd Iterations (Top) - A Single Trace, Zoom on the New Leakage Area (Bottom)

Focusing on the end of the computation, Figure 4.2 displays various shapes that can be found
at the end of the odd iterations with ∆r0,r1 = 2. This might well be additional leakage, but also
could come from another side-channel countermeasure that forces de-synchronization. Again, let
us hope for the best (adversary-wise) and try to give some sense to this behavior.
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Figure 4.2: Feitian A22 JavaCard – ECDSA Signature Verification – Odd Iteration with
∆r0,r1 = 2 – Various Shapes in the EM Signal
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4.2 A Deep Dive into Euclidean Division Algorithms

4.2.1 First Steps

Let us first prepare the subtraces for the analysis, we will need to have well aligned subtraces and
therefore improve our resynchronization algorithm. Figure 4.3 displays the side-channel trace
of the first iterations of an EEA execution. One can see that the first iteration does not have
the same shape as the others. This is always the case, we decided to remove the first subtrace
from our analysis, in fact we will always consider that no information is extracted from the first
iteration 1.

zoom

Figure 4.3: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation – Full
Trace (Top) - Zoom around the First Iterations (Bottom)

Figure 4.4 illustrates the new detection algorithm: it now enters inside the iterations to
automatically detect eight different anchors related to the four different patterns contained in
an iteration. The first anchor (the blue dot) represent the start of the iteration. This process is
more costly than before but also much more precise.

1In fact, working specifically on the first iteration would certainly show some sensitive leakage, this would
require extra work to correctly capture it.
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zoom

zoom

Figure 4.4: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation Pat-
tern Detection – Two Consecutive Iterations (Top) - Several Iterations (Middle) - Full Trace
(Bottom)

Thanks to the iteration detection algorithm, the EEA execution trace can be split into sub-
traces, each of them has its sub-patterns realigned. Figure 4.5 displays the re-alignment result.
The four patterns are identified in the first subfigure. The first one is already known, its length
is directly related to the value ∆r0,r1 . The second one appears to be constant-time (for all odd
and for all even operations). The two last patterns are not constant time and they are the focus
of our analysis. We first restrict our work to the first one, as selected on the second subfigure.
Furthermore, we will first only consider odd iterations as they seem to give a richer information
than the even ones.
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∆r0,r1 Cst Time Leakage
Timing

Leakage
Timing

Figure 4.5: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation –
Resynchronized Iteration – Full Iteration (Top) - Zoom (Bottom)

For reasons beyond our understanding, the shapes of two similar iterations (in terms of
number of peaks) are sometimes different. It indeed happens that an iteration is more compact
than it should be. Figure 4.6 depicts two similar iterations, the first one being the compact
version and the second one being the regular version. In fact this appears at very specific places
in the EEA sequence.
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Figure 4.6: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation –
Resynchronized Iteration – Compact Iteration (Top) - Regular Iteration (Bottom)

We observed that compact iterations occur when the following condition is met:

r1 < 231 or r1 > 2256−16

Figure 4.7 illustrates, on a full EEA execution, the parts where compact iterations are found.
These iterations bear the same information as regular ones, however we also remove them from
the analysis for now as they would just make things more complicated.

r1 > 2256−16 r1 < 231
Selected Iterations

Figure 4.7: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation – Full
Trace with Compact Areas

Finally, our experimental data is ready for the analysis, cleaned from artifacts and limited
to a single case: odd regular iterations. Our next observation gives us some new information
about the new leakage. Figure 4.8 shows three iterations (limited to the unknown leakage area)
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for which both ∆r0,r1 and q are equal to 2. These three iterations have clearly different shapes.
Hence, the leakage provides more information than the value of q (at least in this case). This is
pretty promising as we know already that if q is leaked, the attack will work.

∆r0,r1 = 2,q = 2

∆r0,r1 = 2,q = 2

∆r0,r1 = 2,q = 2

Figure 4.8: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation –
Resynchronized Iteration – ∆r0,r1 = 2, quotient = 2 – Case 1 (Top) - Case 2 (Middle) - Case 3
(Bottom)

This good news is diminished by the observation depicted in Figure 4.9 where two iterations
look similar but are related to different values of q. It means that the new leakage (and in fact
the entire leakage, including ∆r0,r1) does not allow to fully distinguish the quotient q.
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∆r0,r1 = 3,q = 6

∆r0,r1 = 3,q = 4

Figure 4.9: Feitian A22 JavaCard – ECDSA Signature Verification – EEA Computation –
Resynchronized Iteration – ∆r0,r1 = 3, quotient = 6 (Top) - ∆r0,r1 = 3, quotient = 4 (Bottom)

4.2.2 Failed Attempts

Only considering the first 100 EEA traces from the ECDSA signature verification acqui-
sition campaign (i.e. there is a total of 13893 EEA iterations), we manually regroup
matching subtraces (for odd resynchronized iterations) for some small parameters choices
(∆r0,r1 , q) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7)}.

This is a long and error prone process:

• for a parameter choice (∆r0,r1 , q), we extract all subtraces that match the parameters
(omitting the compact iterations, and only selecting the odd iterations);

• from this set of subtraces, manually divide them into matching groups where all subtraces
look alike (this step requires a comfortable visualization tool). For our parameter choices,
the number of groups can be 1 (e.g. (∆r0,r1 , q) = (2, 7)), 2 (e.g. (∆r0,r1 , q) = (1, 1)) or 3
(e.g. (∆r0,r1 , q) = (2, 2), see Figure 4.8).

Our first direction of research was to enumerate all euclidean division algorithms we could
think of and see if one of them could explain these groups. By running a candidate division
algorithm on the inputs (r0, r1) corresponding to all iterations of a set of subtraces, we produced
labels (according to some inner computation or state of the candidate division).

We started with classical textbook divisions (long division, binary divisions, Knuth D
algorithm, etc.) and for each one, tried to tweak it into something that would divide our sets
into correct groups. It sometimes worked for some groups but always failed to scale. We even
dug up an old patent from Infineon [6, 7] that explains how to execute the EEA without directly
manipulating the sequence of quotients by leveraging the access to a long integer modular
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reduction hardware co-processor. This patent seemed like a great clue and we tried everything
to squeeze it into what we observed . . . profitless.

The most promising results were found with the most simple approach. The basic idea
(which is at the basis of fast long division algorithms) is that when dividing two long integers,
we get a good approximation of the quotient with the division of their most-significant-bits
(msb for short). Depending on the number of msb selected for the approximate division, the
approximation of the quotient is more of less precise and the effort to correct it into the real
quotient could be the source of the timing leakage. This effort would be related to the distance
between the real quotient and first approximation. Based on this simple idea we could properly
divide some sets of subtraces and find quite good success with the other sets (the groups are
not perfectly found but the error is small). However this approach does not scale: the more
complicated become the sets (i.e. the larger the parameters (∆r0,r1 , q)) the further go our
observations from the simulations.

These attempts were excessively time consuming and did not allow to conclude on the real
source of leakage. They however demonstrated that the observed timing leakages were clearly
depending on the inputs values (r0, r1) since we managed to divide some sets almost perfectly.
This was enough for us to not give up.

However the only reasonable direction left to us seemed even longer and more painful...

4.2.3 Perseverance is the Key

When we are not smart enough we need to be persevering. Our next approach was to:

1. for each parameters choice (∆r0,r1 , q), enumerate all groups {G(∆r0,r1
,q),i}i (as before);

2. for each group G(∆r0,r1
,q),i, identify all associated inputs pairs (r0, r1);

3. try and find a function f of (r0, r1) that outputs its correct group label i, otherwise just
keep the list of all input pairs.

This process looks actually very close to the our previous attempts, the crucial difference is
that the function f does not have to be an euclidean division and the simplest the better. Here
we are not trying to bridge the gap between the observation and a division algorithm, we are
simply looking for a (set of) leakage function.

Of course, we started with the most simple set of subtraces, which happen to be (∆r0,r1 , q) ∈
{(1, 1), (1, 2)}. These two sets have exactly 2 groups and we quickly found the following matching
function:

f : (r0, r1)→

{

0 len(r1) > len(r0 − 2∆r0,r1 ∗ r1)

1 otherwise

In fact the function works for all our observations for the following sets (∆r0,r1 , q) ∈
{(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (2, 7), (3, 7)} (where the sets (1, 3) and (2, 7) have only a
single group).
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Then we found, for (∆r0,r1 , q) ∈ {(2, 6), (3, 4), (3, 6), (3, 8), (3, 11), (3, 12)}, that the following
function does the trick.

f : (r0, r1)→











0 len(r1)− len(r0 − 2∆r0,r1 ∗ r1) = ∆r0,r1

1 len(r1)− len(r0 − (2∆r0,r1 + 2∆r0,r1−1) ∗ r1) = ∆r0,r1

2 otherwise

Furthermore, we managed to handle the more complex set (2, 2) (with three different groups)
by adding another case to the function:

f : (r0, r1)→



















0 len(r1)− len(r0 − 2∆r0,r1 ∗ r1) = ∆r0,r1

1 len(r1)− len(r0 − (2∆r0,r1 + 2∆r0,r1
−1) ∗ r1) = ∆r0,r1

2 len(r1)− len(r0 − (2∆r0,r1 − 2∆r0,r1−1) ∗ r1) = ∆r0,r1

3 otherwise

Once we get there, and even though many more sets had to be investigated, we could see a
pattern in building a generic function f . Funny enough, when trying to write down the generic
function f , we ended up with an euclidean division !

4.2.4 Infineon Euclidean Division Algorithm

Algorithm 4: Euclidean Division Algorithm

Input : a, b: two positive integers
Output: q: the quotient of the division of a by b

1 r ← a
2 ℓ← len(r)− len(b) // len(x) returns the binary length of x
3 q ← 0
4 while ℓ ≥ 0 do
5 g ← sign(r).2ℓ // sign(x) returns -1 if x < 0, 1 otherwise

6 r ← r − g.b
7 q ← q + g
8 ℓ← len(r)− len(b)

9 end
10 if r < 0 then
11 q ← q − 1 // q is the quotient

12 r ← r + b // r is the remainder

13 end
14 return q

Algorithm 4 is a slightly tweaked schoolbook long division algorithm in base 2, where inter-
mediate remainders are allowed to be negative. We could not find a reference to this specific
algorithm in the literature.

4.3 Summary of the Timing Leakages

The leaked sensitive information relates to the execution time of Algorithms 1 and 4. We sum-
marize here the information inferred directly from the side-channel traces:
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• the successive patterns of the side-channel trace allow to identify the iterations of Algo-
rithm 1 while loop (and then their number);

• for each such iteration, a first timing leakage is proportional to the binary length difference
of the (a, b) inputs of Algorithm 4, i.e. the value ℓ computed at line 2 of Algorithm 4,
so-called ∆r0,r1 in the previous chapters;

• in the cases where this value ℓ is greater than 5, the process is slightly modified, the iteration
takes significantly more time (these are the large iterations identified in Chapter 2). One
interpretation might be that Algorithm 4 is executed only on the most-significant-bits of
its inputs a and b. If ℓ > 5, then the number of most-significant-bits considered is increased
such that the result of Algorithm 4 stays correct;

• then, for all iterations of Algorithm 4 while loop, the side-channel trace shape changes
when:

– ℓ = 0 compared to ℓ > 0 (line 8 of Algorithm 4);

– r < 0 compared to r ≥ 0 (lines 5 and 10 of Algorithm 4);

• for reasons beyond our understanding, the odd and even EEA iterations are slightly different.
For the even iterations, there is less information leaked (or it is harder to extract): the
sign of r only leaks when ℓ > 0 otherwise we do not get it.
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Chapter 5

Key-Recovery Attack on ECDSA

We have finally understood the details of Infineon EEA implementation, making sense to the
observed timing leakages. Let us try to apply the attack process developed in Chapter 3 on the
newly identified leakages.

5.1 Input-Recovery Attack on the EEA

In the previous chapter, Section 4.3, we have precisely identified the sensitive leakage that we are
able to extract from the side-channel traces. The generic attack algorithm decribed in Chapter 3,
Section 3.2, Algorithms 2 and 3 can be applied straightforwardly. We first need to choose a way
to correctly encode the leaked information. We simply use a tuple of variable length:

• the first cell encodes the iteration parity (0 for even iterations, 1 otherwise);

• the second cell encodes the ∆r0,r1 value;

• then, for each iteration of Algorithm 4, a cell stores the value s ∗ v. where s = sign(r) and
v = 1 if ℓ = 0 and v = 2 otherwise 1;

• the encoding supports the two following erasure cases (that can be simultaneous):

– an encoding tuple of length 2 means that only the iteration parity and ∆r0,r1 value
are known, the remaining is not readable (hence any simulated leakage matching with
the ∆r0,r1 value is acceptable for this iteration);

– if the ∆r0,r1 value is set to −1, this means that we could not properly extract the
∆r0,r1 value (then any value for ∆r0,r1 is acceptable).

Also, as observed in Section 4.2.1, the first iteration is considered unreadable and then is
encoded as (0,∆N,k), where ∆N,k is the first (unknown) value of ∆r0,r1 . As explained in Sec-
tion 3.2, the attack is iterated over increasing values of ∆N,k.

With this encoding we can run simulations and see if the leaked information allows for prac-
tical input-recovery attacks.

1Note that for even iterations, the leaked information is slightly different. The encoding follows a similar idea.
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5.1.1 Simulation Experiments

The simulation experiments results are displayed in the following Figure 5.1, they represent about
50 attacks with the leakage function defined in the previous section. They appear in orange on
the figure while the blue dots are the simulation results when the leakage function is directly the
quotient value, taken from Chapter 3, Section 3.3, Figure 3.2.

As one can see, we limited our simulations to the case where the maximum quotient value in
the first half of the EEA iterations is small (in fact we ensured that for the first half of the EEA

iterations, ∆r0,r1 ≤ 5), so that the complexity of the attack stays small.

The attack is always successful in all our tests but, as we can see on the figure, it is slightly
more expensive than the Li = qi case.

Figure 5.1: Simulation of the Generic Attack – Comparison Between Li = qi and Infineon
Leakage

These positive simulation results call for practical validation. Before going there, let us briefly
explain how to find the real nonce k when the blinded nonce k′ is recovered by the side-channel
attack.
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5.2 From Blinded Nonce to ECDSA Long Term Private

Key

Since the multiplicative mask is 32-bit long, one could simply brute-force it: for each mask can-
didate m̂ compute [k′/m]Gx and compare it to the first part of the ECDSA signature r. They
would match for the correct candidate.

There is a much more efficient way to find the mask:

• From the signature (r, s), infer the two points A(x,y) and B(x,y) on the curve such that
Ax = Bx = r (and, in fact A = −B).

• From k′ compute Q(x,y) = [k′]G(x,y) = [m][k]G(x,y)

• finally we have [m]A = Q or [m]B = Q

Hence, finding m corresponds to solve the discreet logarithm on the elliptic curve. The Pol-

lard’s kangaroo algorithm [26] will find the mask in O(2
len(m)

2 ). Since there is a bit of uncertainty
on the point (A or B), the Pollard’s kangaroo algorithm might need to be run twice.

For 32-bit odd masks (as in Infineon implementation), this computation is not necessary
(since the naive brute-force approach would work) but it tells us that the mask should not just
be doubled for security guaranty. Ideally, the mask should be as long as the nonce; that way it
would be as hard to find k from k′ than to find k directly from r.

Finally, from the value of k it is immediate to find the value of the ECDSA long term private
key d as per equation 1.1.

Now that we have a complete key-recovery attack on the paper, let us test it in practice.

5.3 Application to Feitian A22 JavaCard

First, we apply the attack to an ECDSA signature execution on the Feitian A22 JavaCard

acquisition campaign. We selected the 10th ECDSA execution for two reasons:

• we brute-forced the multiplicative mask for this ECDSA execution in Chapter 2, Sec-
tion 2.3.2. Hence, if the attack does not succeed, we can easily check were the error comes
from;

• among the 10 first traces (for which we have the mask), the 10th has one single iteration
with ∆r0,r1 > 5 and it appears in the second half of the EEA sequence. From our simulations,
this trace should be the easiest to attack.

5.3.1 Leakage Extraction

To extract the leakage information about each and every iteration of the EEA side-channel execu-
tion trace, we first created a dictionary of leakage traces. From the ECDSA signature verification
campaign, where we know the EEA inputs (see Chapter 2, Section 2.2), we can list and classify
all iterations (and then side-channel subtraces) according to their leakage value (following the
encoding described in Section 5.1).
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Since we do not have any iteration with ∆r0,r1 > 5 in our target EEA execution (at least not
in the first half of the EEA), we simply build this dictionary for all iterations such that ∆r0,r1 ≤ 5
(for even and odd iterations separately since we have seen that these two cases behave differently).

At the end of this profiling step, we end up with 179 sets for every leakage information that an
iteration can provide (when ∆r0,r1 ≤ 5). We then select a unique reference subtrace for each of
these sets. The number of different sets, with respect to the value of ∆r0,r1 is given in Table 5.1,
we clearly see that odd iterations give away more information as they are divided in more sets
than even iterations.

∆r0,r1 odd even

0 1 1
1 5 2
2 12 6
3 22 9
4 34 15
5 51 21

Table 5.1: Number of Different Sets of Iterations w.r.t. ∆r0,r1

For the attack phase, we first regrouped the subtraces that looked similar (this was done
using an smoothing process in order remove small jitters, it presented in the attack on YubiKey

5Ci, Section 5.4). Then, by hand (there is a total of 156 iterations in the target EEA execution),
we looked for wrongly regrouped subtraces. Finally, for each group (again by hand), we tried
to match the group with a reference set (by visual comparison with the reference subtraces
obtained in the profiling step). This by-hand step took hours of work and would necessitate to
be automatized if this attack were to be taken outside a laboratory. For our purpose (demonstrate
that the attack is possible) it was the (painful but) shortest path.

5.3.2 Attack Results

The attack succeeded in about 222 calls to the truncated EEA algorithm (see Algorithms 2 and 3).
Since the multiplicative mask was already known to us, we could easily check that the recovered
blinded nonce was correct.

5.4 Application to YubiKey 5Ci

Now that the attack has been successfully tested on the training device (the Feitian A22

JavaCard), we can finally go back to our primary target, the YubiKey 5Ci. On which an un-
known long term private key has been generated and where we can run ECDSA signatures with
chosen messages. By opposition to the Feitian A22 JavaCard, we have no access to the private
key value and we cannot run ECDSA signature verifications (and then profile the iterations).

5.4.1 Side-Channel Acquisitions

The acquisition setup is presented in Chapter 1, Section 1.5.2, the first acquired trace of the full
ECDSA is displayed in Figure 1.5. For the attack, we restrict our acquisition to the end of the
ECDSA signature algorithm, the details are given in the following table 5.2, one of the acquired
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trace is displayed in Figure 5.2 after a slight re-centering around the masked nonce modular
inversion.

operation ECDSA signature
equipment LeCroy WavePro 254HD (12-bit), Langer ICR HH 500-06
inputs Messages are random, Key is constant (unknown)
number of operations 200
length 5ms
sampling rate 10GSa/s
samples per trace 50MSamples (16-bit)
channel(s) EM activity
channel(s) parameters DC 50ohms, [−40, 40]mV
file size 20GB
acquisition time about 5 minutes

Table 5.2: Acquisition parameters on YubiKey 5Ci – ECDSA Signature

k−1 mod N

Figure 5.2: YubiKey 5Ci – ECDSA Signature – k−1 mod N Computation

After detecting and removing the interrupts (as for the Feitian A22 JavaCard traces, see
Chapter 2, Section 2.1.2), we get the cleaned trace as depicted in Figure 5.3 first subfigure. When
zooming into the trace, we recognize the different iterations of the EEA. If the EM signal is a bit
different, we get very similar patterns as for the Feitian A22 JavaCard for the odd and even
iterations. The implementation of the EEA seems to be exactly the same (recall that the Infineon
EC cryptolib is not the same version on the YubiKey and then the implementation might have
been updated).
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zoom

zoom

k−1 mod N

Odd Even

Figure 5.3: YubiKey 5Ci – ECDSA Signature – Cleaned k−1 mod N Computation (Top) - Zoom
on Several Iterations (Middle) - Zoom on Two Consecutive Iterations (Bottom)

Since the iterations subtraces are similar, we decide to use the dictionary of subtraces built in
the previous section and use it directly to attack the YubiKey 5Ci traces. Since this dictionary
has been built for ∆r0,r1 ≤ 5 iterations, our first step is to select EEA side-channel execution
traces where the first half of the iterations are all small iterations (as illustrated on the middle
subfigure of Figure 5.3 the large iterations appear and are quite easy to spot).

5.4.2 Leakage Extraction

So our first step is to develop a detection algorithm (adapted to the YubiKey 5Ci EM signal)
to soundly detect all iterations of the side-channel traces and identify the traces without large
iterations (i.e. ∆r0,r1 > 5) for the first half of the iterations. Over the 200 acquired traces, 6 are
identified. For each of the 6 selected traces, the iteration detection algorithm is applied and the
result is illustrated on Figure 5.4.
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k−1 mod N

zoom

Figure 5.4: YubiKey 5Ci – ECDSA Signature – k−1 mod N Computation – Iterations Detection
(Top) - Zoom on Few Iterations (Bottom)

Thanks to the iteration detection, we can split the side-channel trace into subtraces corre-
sponding to single iterations. Figure 5.5 shows a single, resynchronized, iteration. As identified
on the figure, the ∆r0,r1 timing leakage is a bit different in shape than in the Feitian A22

JavaCard traces, but it is still visible and quite easy to extract. For the rest of the leakage (the
Infineon euclidean division leakages), we proceed as for the Feitian A22 JavaCard traces.

∆r0,r1 Euclidean Division Leakages

Figure 5.5: YubiKey 5Ci – ECDSA Signature – k−1 mod N Computation – Odd Iteration Sub-
trace

The subtraces are smoothed with an averaging rolling window of 1500 samples. The result of
this step is depicted on Figure 5.6 for two different odd iterations. The smoothing of the traces
allows to easily regroup iterations with similar signal even in the presence of a small jitter.
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Figure 5.6: YubiKey 5Ci – ECDSA Signature – k−1 mod N Computation – Single Iteration – 2
Different Odd Iterations (First and Third) - After Averaging Rolling Window (Second and Last)

Once the (odd and even) iterations subtraces are automatically regrouped for the 6 selected
EEA executions, each group is by hand matched with a profile group. Again, this step should be
automatized, as it is a long effort and subject to errors. This step took a bit less than 24 hours.
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5.4.3 Attack Results

Finally, the attack was run over the 6 EEA executions with the extracted leakages (and erasures
in case of unreadable subtraces). Five out of the six attacks were successful with complexity
below 228 calls to the truncated EEA. For these five successful attacks, a single blinded nonce was
found and the Pollard’s kangaroo algorithm finished the work by finding the nonce from which
we deduced the long term private key (as explained in Section 5.2).

From the private key, we could roll back to the EEA execution where the attack did not
work. We computed the nonce, brute-forced the multiplicative mask and simulated the leaked
information from the blinded nonce. It appeared that two different errors of leakage extraction
were made in the first half of the EEA iterations. This is due to our error prone step of leakage
extraction, we strongly believe that with some engineer work, this step could be greatly improved
in time and reliability.

5.5 Conclusions

The attack was demonstrated on two different devices, one of which the long term private key
was unknown to us. The overall attack time can be divided in two steps:

• the online phase, where the device must be in the adversary hands. In this phase, the
adversary needs to open the device to access the Infineon secure element, put an EM probe
and run several ECDSA signatures. Then the device must be re-packaged and quietly
returned to the legitimate user. Since the acquisition phase takes few minutes, we estimate
to less than an hour the whole process (assuming one can find a reliable way to open and
close the device, we did not work on this part);

• the offline phase took about 24 hours in total for us. The vast majority of this time is
spent in a by-hand process that should be automatized. The rest is the iteration detection
and splitting of the traces (few seconds), the attack process on the extracted leakages (few
minutes) and the discreet logarithm computation (few seconds). With enough engineering
work, this offline step should take less than an hour.

Finally, for the attack on the YubiKey 5Ci, we used 200 ECDSA signatures to produce 5
successful attacks. Hence, in average, our attack cost about 40 ECDSA signatures. The main
limitations to reduce this number are (1) the learning phase must be extended to the ∆r0,r1 > 5
iterations, there does not seem to be any reason for this to be a problem (but we did not do it,
so we never know) and (2) the attack process cost will increase with large ∆r0,r1 iterations. This
would impact the offline phase of the attack, and certainly be acceptable for most of the EEA

executions 2.

2EEA executions with many large ∆r0,r1 iterations do not appear very often
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Chapter 6

Beyond SLE78

6.1 Infineon Security Microcontrollers

It is not that easy to get a proper picture of the Infineon security microcontrollers families 1

(and this is also true for the other big secure element manufacturers). The CC certificates pub-
lication of these chips is certainly the best way to keep track with the different chips hardware
and embedded firmware versions.

One thing that helps with Infineon security microcontrollers is that they are all certified
by the German certification body (BSI 2) except for two of them certified by the Netherlands
certification body (NSCIB 3). All of these CC evaluations were performed by the same ITSEF,
TÜVIT 4 which happens to be accredited for CC hardware certifications by both BSI and NSCIB.

All of these CC certificates are public and come along with public security target and certifica-
tion report documents that contains valuable information about the chip and firmware versions.
Furthermore, the BSI has a quite nice database search engine 5 that helps in finding the different
documents. We also must mention the great SEC-CERTS initiative [13, 12] that ended up in a
powerful CC documents search engine 6.

Thanks to these certifications, we were able to identify 4 large families of Infineon security mi-
crocontrollers. Figure 6.1 illustrates these 4 families along with the number of CC certifications
(AVA VAN 4 for TPMs and AVA VAN 5 for security microcontrollers with optional cryptographic
library 7). These 4 families distinguish from each other by the technological node of the chips:
from 90nm for the SLE78 to 28nm for the most recent family. While the two oldest families
are based on proprietary 16-bit microcontrollers from Infineon, the two most recent ones are
ARM-based 32-bit microcontrollers: the first one is based on an ARM SecureCore SC300 8 while

1https://www.infineon.com/cms/en/product/security-smart-card-solutions/
2https://www.bsi.bund.de/
3https://trustcb.com/common-criteria/nscib/
4https://www.tuvit.de/en/home/
5https://www.bsi.bund.de/SiteGlobals/Forms/Suche/EN/Expertensuche_Formular.html
6www.sec-certs.org
7We limit ourselves to the lowest level of certifications that includes the vulnerable Infineon cryptolib. JavaC-

ard OSes and Applets (banking, passport, etc.) will be certified on top of IC certifications and will rely on them
for security guaranties using the handful composite certification process of CC. The TPM is a special case in CC
certification, they usually are certified as a single block including both IC and top firmware levels.

8https://developer.arm.com/Processors/SecurCore%20SC300
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the second one is certainly based on the more recent ARM Cortex-M35P 9.

Figure 6.1 gives, for each family of security microcontrollers, the number of identified IC
models along with the number of CC certificates and CC maintenance certificates. We also show
the date of the first and last certificate that was published. Note that for the SLE78 family, a
certificate was produced on July the 3rd 2024 (i.e. during the EUCLEAK responsible disclosure
period) where all cryptolibs are removed from the scope 10. The detailed information about each
IC model and certificate is provided in Annex B.

16-bit, 90 nm
M78XX

11 (41,19)

16-bit, 65 nm
IFX CCI 0-0Xh

3 (19,7)

SC300, 40 nm
IFX CCI 0-0XYh

4 (16,1)

Armv8-M, 28 nm
IFX CCI 00007Dh

1 (1,0)

Legend: # IC Model (# CC Certification Reports, # CC Maintenance Reports)

FEITIAN A22 YubiKey 5Ci

Optiga Trust M

Optiga TPM

2009201020112012201320142015201620172018201920202021202220232024

Figure 6.1: Infineon Security Microcontroller Families

In Figure 6.1, we identified the two targets of our attack as being part of the SLE78 family (the
oldest one), the YubiKey being slightly more recent than the Feitian A22 JavaCard. We could
identify two other products: the Optiga Trust M and the Optiga TPM chips that are part of
more recent families of Infineon security microcontrollers. The good thing about these products
is that development boards to play with them are available. The chips are not completely open
but in both cases one can send commands that will trigger an ECDSA signature / verification
computation. Let us have a look at these products.

6.2 Infineon Optiga Trust M

In order to run cryptographic commands on the Optiga Trust M chip, we acquired a PSoCTM

62S2 evaluation kit (CY8CEVAL-062S2) (see Figure 6.2). Source code and documentation is
freely available 11, we strictly followed Infineon examples to get started with Optiga Trust M

cryptographic commands 12. We could easily develop a simple code that sends ECDSA signature
and ECDSA signature verification commands to the Optiga Trust M and could even control
GPIOs that will tell our oscilloscope that the ECDSA operation is starting.

9https://developer.arm.com/Processors/Cortex-M35P
10See https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/0891
11https://github.com/Infineon/optiga-trust-m
12https://github.com/Infineon/mtb-example-optiga-crypto
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Figure 6.2: Optiga Trust M – PSoCTM 62S2 evaluation kit (CY8CEVAL-062S2)

6.2.1 Side-Channel Acquisitions

Figure 6.3 shows the side-channel setup, the green wire is there to catch the GPIO signal that
will trig the acquisition right before the ECDSA operation. Figure 6.4 displays the EM probe
position we used over the Infineon chip.

Figure 6.3: Optiga Trust M – Acquisition Setup
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Figure 6.4: Optiga Trust M – EM Probe Position

For the record, the acquisition details for the ECDSA signature operations are given in
Table 6.1. We did not change the parameters for few ECDSA signature verification operations.

operation ECDSA signature
equipment LeCroy WavePro 254HD (12-bit), Langer ICR HH 500-06
inputs Messages are random, Key is constant (randomly chosen)
number of operations 10
length 200ms
sampling rate 1GSa/s
samples per trace 200MSamples (16-bit)
channel(s) EM activity
channel(s) parameters DC 50ohms, [−200, 200]mV
file size 4GB
acquisition time about 1 minute

Table 6.1: Acquisition parameters on Optiga Trust M – ECDSA Signature

Figure 6.5 (resp. Figure 6.6) displays a full side-channel ECDSA signature (resp. signature
verification) execution trace. These execution traces are very similar to what was observed on
the SLE78 experiments and finding the nonce modular inversion was quite straightforward (as
illustrated on the figures).
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Figure 6.5: Optiga Trust M – ECDSA Signature – Full Trace (Top) - Zoom in Computation
End (Middle) - k−1 mod N Computation (Bottom)
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Figure 6.6: Optiga Trust M – ECDSA Signature Verification – Full Trace (Top) - Zoom before
Double Scalar Mult. (Middle) - s−1 mod N Computation (Bottom)

These observations tend to show that Infineon modular inversion implementation did not
change in these more recent chips. We will go one step further to completely validate this
assumption.

6.2.2 Leakage Observation

In order to acquire more executions and more precisely, we reduced the acquisition time span
by selecting the area before the Double Scalar Multiplication in ECDSA signature verification
operation. We could then reduce the y-axis dynamic and increase the sampling rate and the
number of acquired ECDSA signature verification executions. Details are given in Table 6.2. An
example of the acquired traces is displayed in Figure 6.7.
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operation ECDSA signature verification
equipment LeCroy WavePro 254HD (12-bit), Langer ICR HH 500-06
inputs Messages are random, Signature generated from a constant Key
number of operations 200
length 10ms
sampling rate 5GSa/s
samples per trace 50MSamples (16-bit)
channel(s) EM activity
channel(s) parameters DC 50ohms, [−80, 80]mV
file size 15GB
acquisition time about 9 minute

Table 6.2: Acquisition parameters on Optiga Trust M – ECDSA Signature Verification

Figure 6.7: Optiga Trust M – ECDSA Signature Verification – Full Trace

With this new acquisition, we first cleaned the interrupts and detected each iteration of
the EEA execution as this was done before on Feitian A22 JavaCard and YubiKey 5Ci traces.
Figure 6.8 shows a cleaned trace (first subfigure) and an iteration subtrace (second subfigure).
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Figure 6.8: Optiga Trust M – ECDSA Signature Verification – Cleaned s−1 mod N Computa-
tion (Top) - Single Odd Iteration after Splitting (Bottom)

Since we are working on the modular inversion of the known s (the second part of the ECDSA
signature), and that Infineon did not add side-channel countermeasures to this operation, we can
predict the Infineon leakages (see Chapter 4, Section 4.3) from the value of s. We could then
validate that the subtraces still show the same leakages as before. Figure 6.9 illustrates this
verification: 100 odd iterations subtraces are superposed, the color of the subtrace is dictated by
the values of ∆r0,r1 , one can clearly see that the subtraces are naturally grouped by color.

Figure 6.9: Optiga Trust M – ECDSA Signature Verification – 100 superposed Odd Iterations)

Hence, we validated that the implementation did not change. However, since we did not do
the attack completely on the ECDSA signature operation, we cannot fully conclude. For in-
stance, Infineon might have simply increased the size of the multiplicative mask used to protect
the nonce modular inversion.
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After this test we contacted Infineon and the other stakeholders to start the responsible dis-
closure. We explained our experiments on Optiga Trust M and that we supposed that the mask
length was still 32 bits. Infineon neither confirmed nor denied and went on with implementing
a countermeasure: increase the size of the multiplicative mask up to the size of the nonce. We
can then safely conclude that the Optiga Trust M is vulnerable to the EUCLEAK attack.

6.3 Infineon Optiga TPM

It is only after the start of the responsible disclosure that we remarked that the Optiga TPM

was available (and part of a family that we did not analyze yet). So we ordered on Farnell the
OPTIGA TPM 9673 RPI evaluation kit the 5th May 2024.

Figure 6.10: Optiga TPM – OPTIGA TPM 9673 RPI EVAL

We followed Infineon examples to get started with TPM cryptographic commands 13 and
easily developed a simple code to send ECDSA signature and signature verification commands
to the TPM.

6.3.1 Side-Channel Acquisitions

Figure 6.11 shows the side-channel setup with the EM probe position we used over the Infineon
chip.

13https://github.com/Infineon/optiga-tpm
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Figure 6.11: Optiga TPM – Acquisition Setup

First we acquired few side-channel traces of the whole TPM ECDSA signature verification
command with low sampling rate because of the command length (about 1 second). The result-
ing traces have 1.25G samples and, at first sight, it is not so easy to find the actual ECDSA
computations (see first subfigure of Figure 6.12). Indeed, on the TPM board we do not have a
handy GPIO signal telling us when the ECDSA operation is starting.

Nevertheless, by changing the elliptic curve size (to 384 bits), the cryptographic operation
stands out (as it changes significantly its execution time while the rest of the command does
not). We hence could isolate the ECDSA signature verification operation (as shown in the
second subfigure of Figure 6.12)
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Figure 6.12: Optiga TPM – ECDSA Signature Verification – Full Trace (Top) - Zoom on ECDSA
Operation (Bottom)

Interestingly the ECDSA signature verification on the Optiga TPM does not match the execu-
tion we have seen on SLE78 or Optiga Trust M. It seems that the first part of the computation is
missing and only the double scalar multiplication is left. This might mean that the cryptographic
library has been updated.

In order to improve our understanding of the traces, we acquired a new set of traces, around
the double scalar multiplication. For the record, the acquisition details for the ECDSA signature
verification operation are given in Table 6.3.

operation ECDSA signature verification
equipment PicoScope 6424E, Langer ICR HH 500-06
inputs Messages are random, Signature generated from a constant Key
number of operations 200
length 200ms
sampling rate 5GSa/s
samples per trace 1GSamples
channel(s) EM activity
channel(s) parameters DC 50ohms, [−20, 20]mV
file size 200GB
acquisition time about 20 minutes

Table 6.3: Acquisition parameters on Optiga TPM – ECDSA Signature Verification

The acquired traces are displayed in Figure 6.13, one can see that the double scalar mul-
tiplication is preceded by a pattern that looks very much like the modular inversion of s (and
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indeed this operation needs to be executed prior to the double scalar multiplication). When
zooming into the modular inversion trace, one can guess the EEA iterations (see last subfigure)
and a quick count of these iterations shows that their number matches what is expected from
the EEA iterations. The signal is weaker than before and to better see the iterations, the signal
on the last subfigure went through a bandpass filter (few MHz to 200MHz).

zoom

zoom

Figure 6.13: Optiga TPM – ECDSA Signature Verification – Full Computation (Top) - Zoom on
s−1 mod N Computation (Middle) - Zoom on Few Iterations (Bottom)

From this observation, one cannot really prove that the sensitive leakage still exists and is
exploitable. However, we have good reasons to believe that the implementation of the modular
inversion did not change. At the end of May 2024, and then during the responsible disclosure, we
described our experiments on the Optiga TPM to Infineon. We hence considered that, without
new inputs, all Infineon security microcontrollers and all Infineon EC cryptolib versions are
susceptible to the EUCLEAK attack. Infineon neither confirmed nor denied.
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Chapter 7

Conclusions

To conclude, we present the impact analysis of the EUCLEAK attack, then the attack mitiga-
tions and avenues of research that follow this work. Finally, the project timeline is also provided.

First, let us summarize what are the basic requirements for the EUCLEAK attack to be
feasible in practice:

• A secure system using an Infineon security microcontroller that embeds the Infineon cryp-
tographic library and runs cryptographic operations involving the modular inversion of a
secret (e.g. ECDSA).

• The attacker should have physical access to the device. This is the online phase of the
attack. Concretely, the attacker needs:

– to open the device in order to access to the Infineon security microcontroller chip
package. Depending on the difficulty of this opening procedure, the online phase can
take more or less time;

– an electromagnetic probe, an oscilloscope and a computer to capture the electro-
magnetic side-channel signal of the chip during the cryptographic computations, by
putting the electromagnetic probe just above the chip package during the executions
(few minutes). Note that the side-channel setup can be mobile (e.g. by using a
PicoScope [25] and a laptop which fit in a case or a backpack).

• Later, the offline phase will take one hour to one day for the attacker to retrieve the secret
from the captured side-channel traces.

Note that the side-channel capture must be reproduced for every different secret stored in
the chip (for instance in FIDO, for every web service protected by FIDO, a dedicated key pair is
associated – one must then capture a set of side-channel acquisitions for each different targeted
secret – the device however has to be opened only once). The offline phase also has to be
reproduced for every secret.

75



7.1 Impact on Infineon Security Microcontrollers

We suspect that all Infineon security microcontrollers embedding Infineon cryptolib 1 are affected
by the attack. We reproduce below Figure 6.1: our understanding of Infineon security microcon-
trollers families, it was built upon the public documents produced by the Common Criteria (CC
for short) certification process, details are given in Annex B.

Figure 6.1 reads as follows: the 65nm family of Infineon security microcontrollers (in blue)
possesses three different IC models (or configurations), they went through 19 CC certifications
and 7 CC maintenances from 2017 (first certificate) to 2023 (last certificate at the time of writing
this report).

16-bit, 90 nm
M78XX

11 (41,19)

16-bit, 65 nm
IFX CCI 0-0Xh

3 (19,7)

SC300, 40 nm
IFX CCI 0-0XYh

4 (16,1)

Armv8-M, 28 nm
IFX CCI 00007Dh

1 (1,0)

Legend: # IC Model (# CC Certification Reports, # CC Maintenance Reports)

FEITIAN A22 YubiKey 5Ci

Optiga Trust M

Optiga TPM

2009201020112012201320142015201620172018201920202021202220232024

Figure 6.1: Infineon Security Microcontroller Families (repeated from page 64)

The four identified products on the figure (Feitian A22 JavaCard, YubiKey 5Ci, Optiga
Trust M and Optiga TPM) were analyzed in our work. The EUCLEAK attack was fully demon-
strated on Feitian A22 JavaCard and YubiKey 5Ci (see Chapter 5). Strong arguments that
the attack is also applicable to Optiga Trust M and Optiga TPM were presented (see Chapter 6).

Infineon did not clearly confirm nor deny our suspicion but went on to develop a patch for
their cryptolib (see the mitigation in Section 7.4). To our knowledge, at the time of writing this
report, the patched cryptolib did not yet pass a CC certification. Anyhow, in the vast majority of
cases, the security microcontrollers cryptolib cannot be upgraded on the field, so the vulnerable
devices will stay that way until device roll-out.

7.2 Confirmed Vulnerable End-User Products

So far, here is the list of products where the impact is confirmed.

1Remark that this is not always the case, e.g. large smartcard manufacturers, like Thales-DIS, IDEMIA or
G+D, usually develop their own cryptolibs instead of using the ones from the secure element manufacturer.
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7.2.1 YubiKey 5 Series

All YubiKey 5 Series with firmware version below 5.7 are vulnerable to the attack. YubiKey

firmware is not upgradable 2, only the security keys shipped with firmware 5.7 or later are
resistant. EUCLEAK vulnerability impacts FIDO/FIDO2 and most certainly PGP and PIV
(when ECDSA is used).

7.2.2 Feitian A22 JavaCard

Feitian claims that the Feitian A22 JavaCard analyzed in this work does not exist anymore, the
new versions as well as all other Feitian products based on an Infineon security microcontroller
embed a cryptolib developed by Feitian. We could partially verify this claim by looking at the
side-channel traces of an Feitian K44 device running ECDSA (see slides 23 to 27 of [18] for
more details about Feitian FIDO hardware tokens), it is indeed quite different from Infineon
implementation.

7.2.3 Infineon TPMs

All Infineon TPMs from the SLB96xx version (see the TPMs listed in Annex B) are impacted
by the attack.

7.3 Potentially Vulnerable Products

Secure elements, and at a good place Infineon’s, are involved in many large secure systems.
Building a comprehensive list of the impacted systems is clearly out of NinjaLab reach.

Any system whose security relies on ECDSA (or the modular inversion of a secret) that is
run on an Infineon security microcontroller (at least starting with the first version of the SLE78),
embedding Infineon cryptographic library (any version until the patch is out and shipped) might
be at risk.

We have already discussed FIDO/FIDO2 hardware tokens and TPMs, mentioned PIV
and PGP, many more products can be considered:

• Crypto-Currency Hardware Wallets:
They naturally rely on ECDSA (for signing transactions). Several embed an Infineon chip
with Infineon cryptolib 3.

• ID cards/Passports/Health cards:
In this area, Infineon security microcontrollers are omnipresent. for obvious reason, it
is quite complicated for small independent research companies like NinjaLab to attack
governmental-critical products, even for demonstration purposes.
Nevertheless, recent electronic passports [11] support either the Active Authentication pro-
tocol (that involves ECDSA computation) or the more recent PACE-CAM protocol (that
involves the modular inversion of the long term secret) for anti-cloning and therefore might
be subject to the EUCLEAK attack.

2See https://support.yubico.com/hc/en-us/articles/360013708760-YubiKey-Firmware-is-Not-

Upgradable
3See for instance https://bitcointalk.org/index.php?topic=5304483.0 for a list of the secure elements used

in different crypto-currency hardware wallets.
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For instance, from the BSI CC certification database, several passport applet develop-
ers directly use Infineon cryptolib when running on an Infineon security microcontroller
(MaskTech, Eviden, Universal Information Technology LLC, cryptovision GmbH).

• Matter:
The Matter standard for IoT devices relies on ECDSA 4, Infineon products are involved in
this initiative 5.

• V2X:
Cars are also a good example where secure elements show themselves very useful and where
Infineon is present 6. The associated protocols naturally involve ECDSA 7.

7.4 Attack Mitigations

Several measures can be implemented to thwart the proposed attack, at different levels.

7.4.1 Hardening the Infineon Cryptographic Library

The simplest mitigation to the EUCLEAK attack at the cryptolib level would be to improve the
Infineon nonce blinding countermeasure by increasing the size of the multiplicative mask to the
size of the elliptic curve.

According to Infineon, this is the mitigation they have chosen to develop and they already
have a working implementation. They offered to send us an Optiga TPM with the patched version
of the EC library, but we declined. Indeed, it would be quite hard to validate that they did what
they say without access to the source code of the library. We then let the CC ITSEF check the
new countermeasure implementation as they do have access to the source code during the CC
evaluation.

Another mitigation would be to change the modular inversion algorithm and, e.g., switch to
a modular exponentiation instead of the EEA.

7.4.2 High-Level Mitigations

Let us emphasize here that we strongly encourage to continue to use an EUCLEAK vulnerable
product rather than switching to a solution that does not involve a secure element. So in cases
where a vulnerable product has to be used (e.g. it cannot be patched and roll-out is not coming
fast enough), some temporary mitigations might exist:

• Avoid ECDSA: Many protocols/applications offer the possibility to choose the crypto-
graphic primitive from a list. This is for instance the case for FIDO2, PIV or PGP.

• Defense in Depth: When this is possible activate all defense layers, e.g. enforce the use
of a PIN (or any biometrics) to access to the device.

4See https://csa-iot.org/wp-content/uploads/2022/03/Matter_Security_and_Privacy_WP_March-2022.

pdf
5https://www.nagra.com/kudelski-iot-partners-infineon-enhance-smart-home-device-security-new-

matter-certified-solution
6https://globalplatform.org/wp-content/uploads/2023/12/5.-Antoaneta-Kondeva_eSE_in_Automotive_

GP_automotive.pdf
7See e.g. https://www.commoncriteriaportal.org/files/ppfiles/pp0114b_pdf.pdf
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• Protocol Specific Mitigations: For FIDO devices, a mitigation exists that can be im-
plemented to reduce the attack threat without changing the device. As explained in section
8.1 of [5], a counter may be used as a signal for detecting cloned FIDO device. Thus if a
web service protected with FIDO receives a cryptographically correct authentication mes-
sage, but with a counter value smaller or equal to the previous counter value recorded, it
means that a clone of the FIDO device has been created and used. Then the web service
should not validate the authentication request, and lock the account.

This countermeasure would reduce the usability of the clone to a unique time after giving
the security key back to the legitimate user. Once the clone has been used, the account
will be locked by the next access from the legitimate user.

7.5 Avenues of Research

Many different directions of research could be investigated, this report leaves open the following
questions:

• Sensitive modular inversions are not exclusively found in the ECDSA scheme. It would be
interesting to look at the RSA (and especially the key generation) and study the application
of EUCLEAK there.

• The proposed attack process should be studied in more depth, starting with a theoret-
ical analysis of its performances. More generally, the study of the minimal quantity of
information leaked necessary for attacking the EEA would be quite interesting.

• On a more practical side, pushing the attack effectiveness to make it a proper single-
trace attack would also be interesting. As well as working on the side-channel acquisition:
capturing the signal a bit farther from the chip or capturing the signal on a contactless-only
product (like a passport) would both be interesting directions.

• If the side-channel analysis of the EEA is not quite common in the literature (we did not
find any reference), there are few papers on the side-channel analysis of the Binary EEA

(certainly because the algorithm is more often used in practice), see e.g. [9, 2, 1]. It might
be interesting to confront this literature with the generic attack approach proposed in our
work.

• In [1], one can read ”LibreSSL uses [the EEA] as a side-channel hardened modular inversion
function, even though the execution flow of this algorithm also depends on its inputs. No
evidence of a side-channel attack on this algorithm variant has been published yet, so its
resilience against SCA remains as an open problem. Therefore, to the best of our knowledge,
this algorithm is considered safe in this context.” We believe that this assumption should
be re-considered in light of the EUCLEAK attack.

7.6 Project Timeline

The project spreads over 2 years, with large pauses and small, often intense, work slots. The
project timeline is then a bit fuzzy. Most of what is presented in Chapter 2 – the first reverse
engineering phase – was done at the beginning of 2022.
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Then the project was paused until spring 2023 where the generic attack (or at least its first
version) was developed and tested with the negative conclusion of Chapter 3. The project was
then definitely closed during the summer 2023.

The project reopened itself early 2024, as definitely-closed projects sometimes do, and the
longest part of the project started, we tried to describe it in Chapter 4. After that, everything
went much faster:

• March 21st, 2024:

– Attack validated on Feitian A22 JavaCard.

• April 5th, 2024:

– Attack validated on YubiKey 5Ci.

• April 18th, 2024:

– Leakage Validation on Optiga Trust M.

• April 19th, 2024:

– Contact Infineon, Yubico, Feitian , CERT-FR (ANSSI), CERT-BUND (BSI), with
a short technical description of our work and our coordinated responsible disclosure
plan (expected to end at the beginning of September 2024).

– Acknowledgment of reception from Yubico Security team and ANSSI CERT-FR.

• April 22nd to 24th, 2024:

– Acknowledgment of reception from BSI CERT-BUND, Infineon and Feitian

– Feitian explains that the Feitian A22 JavaCard has been updated years ago and
none of their products is impacted.

• April 25th, 2024:

– Meeting with Yubico security team, they acknowledge that all YubiKey 5 Series

are impacted by the attack. Yubico explains that they are actually in the middle of
switching from Infineon cryptolib to their own.

• May 2nd, 2024:

– At the request of Infineon, NinjaLab sends more technical details of the attack.

• May 6th, 2024:

– YubiKey firmware 5.7 update 8, Yubico switches to its own cryptolib.

• May 15th, 2024:

– Optiga TPM evaluation kit ordered on Farnell.

• May 30th, 2024:

– Notification to Infineon that Optiga TPM is also impacted.

8https://yubi.co/yubikey-5-7-authenticator-7-blog
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• June 24th, 2024:

– Meeting with ANSSI to present our work and discuss technical details.

• July 18th, 2024:

– Meeting with BSI to discuss technical details.

• July 26th, 2024:

– Infineon shares with us the news that they have a patch working; they offer that
NinjaLab checks the leakage of a Optiga TPM with the patched library, we decline the
offer.

• August 27th, 2024:

– CVE ID requested. We are still waiting for one.

• September 3rd, 2024:

– publication of this report on the NinjaLab website.
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[19] V. Lomné and T. Roche. A Side Journey to Titan. https://ninjalab.io/wp-content/

uploads/2022/05/a_side_journey_to_titan.pdf, Feb. 2021.

[20] Martin Paljak. Ant JavaCard Project Github repository. https://github.com/

martinpaljak/ant-javacard. [online; accessed 2-September-2024].

[21] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. TPM-FAIL: TPM meets Timing
and Lattice Attacks. In 29th USENIX Security Symposium (USENIX Security 20), Boston,
MA, Aug. 2020. USENIX Association.

[22] M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas. The Return of Coppersmith’s
Attack: Practical Factorization of Widely Used RSA Moduli. In 24th ACM Conference on
Computer and Communications Security (CCS’2017), pages 1631–1648. ACM, 2017.

[23] NIST. FIPS 186-2, Digital Signature Standard (DSS). https://csrc.nist.gov/csrc/

media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf,
2001. [online; accessed 2-September-2024].

[24] Oracle. JavaCard Connected Platform Specifications 2.2.2. https://www.oracle.com/

java/technologies/java-card/platform-specification-v222.html. [online; accessed
2-September-2024].

[25] Pico Technology. PicoScope 6000E Series datasheet. https://www.picotech.com/

download/manuals/picoscope-6000e-series-data-sheet.pdf, 2019. [online; accessed
2-September-2024].

[26] B. J. M. Pollard. Monte Carlo methods for index computation (). Mathematics of Compu-
tation, 32:918–924, 1978.
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Appendix A

YubiKey 5C Case Opening

The EUCLEAK attack relies on timing leakages and then does not need ultra-high quality side-
channel traces. In fact, during this work, we never needed to open a chip package to put our EM
probe very close to the die 1.

Nevertheless, capturing the EM signal with a small EM probe would not work if this probe is
too far from the chip. We hence have to open the YubiKey plastic case to access its logic board.
We bought two YubiKey 5C (see Figure A.1) and tried two different case openings.

Figure A.1: Brand New YubiKey 5C

First by cutting the edge of the product until the plastic case can be opened in half, the result
is shown in Figure A.2. The process takes few minutes, the device is still working. The second
approach takes even less time, we just dig a hole at the right place, this takes few seconds, the
result is shown on Figure A.3.

1For instance, in our previous work on Google Titan Security Key [19], the side-channel acquisition needed
much more care.
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Figure A.2: YubiKey 5C – First Opening

Figure A.3: YubiKey 5C – Second Opening

In both cases however, the device needs to be re-packaged if the adversary wants to give it
back to legitimate user without him noticing. We did not study further this issue.
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Appendix B

Infineon Security Microcontrollers

Name Certificate
Reference

Dates #Certificates/
#Maintenances

Library
Version

Link

M7820 A11

BSI-DSZ-CC-0640 2010-
2010

1/2 EC v1.1.18 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0640.html

BSI-DSZ-CC-0728 2011-
2011

1/1 EC v1.02.008 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0728.html

BSI-DSZ-CC-0758 2012-
2012

1/1 EC v1.02.013 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0758.html

BSI-DSZ-CC-0829 2012-
2017

2/3 EC v1.02.013 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0829_V2.html

M7801 A12
BSI-DSZ-CC-0606 2010-

2010
1/0 EC v1.1.18 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0606.html

BSI-DSZ-CC-0727 2011-
2011

1/0 EC v1.02.008 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0727.html

M7820 M11 BSI-DSZ-CC-0695 2011-
2013

1/2 EC v1.02.008 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0695.html

M7892 A21 BSI-DSZ-CC-0813 2012-
2012

1/0 EC v1.02.008 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0813.html

M7892 B11 BSI-DSZ-CC-0782 2012-
2020

5/1 EC v1.02.013 or
v2.07.003

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0782_0782V2_0782V3_0782V4_

0782V5.html

M7893 B11 BSI-DSZ-CC-0879 2014-
2022

5/1 EC v1.03.006 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0879_0879V2_0879V3_0879V4_

0879V5.html

M7892 D11 and G12 BSI-DSZ-CC-0891 2015-
2024

7/1 EC v1.02.013 or
v2.03.008

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0891

M7892 P11 BSI-DSZ-CC-1105 2020-
2020

1/0 EC v2.03.008 or
v2.07.003

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1105.html

SLB96xx

(TPM)
BSI-DSZ-CC-0844 2014-

2017
2/1 v4.43.0257.00,

v4.43.0258.00 and
v4.43.0259.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0844_0844V2.html

SLB9665

(TPM)

BSI-DSZ-CC-0965-
2015

2015-
2015

1/0 v5.51.2098.00 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0965.html

BSI-DSZ-CC-1020 2016-
2017

2/1 v5.62.3126.00,
v5.62.3127.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1020_1020V2.html

BSI-DSZ-CC-1056-
2018

2018-
2018

1/0 v5.63.3144.00,
v5.63.3149.00,
v5.63.3353.00,
v5.63.3355.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1056.html

SLB9670

(TPM)

BSI-DSZ-CC-0958 2015-
2017

2/2 v6.43.0243.00,
v6.43.0244.00,
v6.43.0245.00 and
v6.43.0246.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0958_0958V2.html

BSI-DSZ-CC-0998-
2016

2016-
2016

1/1 v7.40.2098.00 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0998.html

BSI-DSZ-CC-1021 2016-
2017

2/1 v7.62.3126.00,
v7.62.3127.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1021_1021V2.html

BSI-DSZ-CC-1057-
2018

2018-
2018

1/0 v7.63.3144.00,
v7.63.3149.00,
v7.63.3353.00,
v7.63.3355.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1057.html

BSI-DSZ-CC-1058-
2018

2018-
2018

1/0 v7.83.3358.00,
v7.83.3360.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1058.html

BSI-DSZ-CC-1086-
2018

2018-
2018

1/1 v7.85.4555.00,
v7.85.4567.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1086_1086ma01.html

BSI-DSZ-CC-1100-
2018

2018-
2018

1/0 v13.11.4555.00 https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1100.html

Table B.1: Infineon Security Microcontrollers – M78XX (SLE78) – 16-bit, 90 nm
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Name Certificate
Reference

Dates #Certificates/
#Maintenances

Library
Version

Link

IFX CCI 000003h
BSI-DSZ-CC-1110 2019-

2023
6/1 EC V2.06.003

or V2.07.003 or
V2.08.007

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1110.html

BSI-DSZ-CC-0945 2017-
2018

3/3 EC V2.06.003 or
V2.07.003

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0945_0945V2_0945V3.html

IFX CCI 00000Fh BSI-DSZ-CC-1079 2018-
2023

4/1 EC v2.07.003,
v2.08.007, or
v3.33.003

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1079.html

IFX CCI 00007h BSI-DSZ-CC-0961 2017-
2022

6/2 EC V2.06.003,
V2.07.003,
V2.08.007

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/0961_0961V2_0961V3_0961V4_

0961V5_0961V6.html

Table B.2: Infineon Security Microcontrollers – IFX CCI 0-0Xh – 16-bit, 65 nm

Name Certificate
Reference

Dates #Certificates/
#Maintenances

Library
Version

Link

IFX CCI 000011h BSI-DSZ-CC-1025 2018-
2023

5/0 EC v2.08.006
or v3.03.003 or
v3.04.001

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1025.html

IFX CCI 001Fh

(SLC37)
BSI-DSZ-CC-1102 2019-

2020
1/1 NA https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1102.html

IFX CCI 00003Fh

(SLC37)
NSCIB-CC-
2200060-01-CR

2023-
2023

1/0 EC v3.03.003 or
v3.04.001

https://www.trustcb.com/download/nscib-cc-2200060-

01-cr/

NSCIB-CC-
0173264-CR3

2021-
2021

1/0 EC v3.03.003 https://www.tuv-nederland.nl/assets/files/

cerfiticaten/2021/12/cc-21-0173264-cr3-1.0.pdf

SLB9672/SLB9673

(TPM)

BSI-DSZ-CC-1113 2021-
2023

5/0 v15.20.15686.00,
v15.21.16430.00,
v15.22.16832.00
und
v15.23.17664.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1113.html

BSI-DSZ-CC-1178 2021-
2023

4/0 v16.10.16488.00,
v16.12.16858.00
and
v26.10.16688.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1178_1178V2_1178V3.html

BSI-DSZ-CC-1179 2021-
2023

4/0 v17.10.16488.00,
v17.12.16858.00,
v17.13.17733.00,
v27.10.16688.00
and
v27.13.17770.00

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1179_1179V2_1179V3.html

Table B.3: Infineon Security Microcontrollers – IFX CCI 0-0XYh – ARM SC300, 40 nm

Name Certificate
Reference

Dates #Certificates/
#Maintenances

Library
Version

Link

IFX CCI 00007Dh BSI-DSZ-CC-1229 2024-
2024

1/0 CryptoSuite
v4.06.002

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/

SmartCards_IC_Cryptolib/1229.html

Table B.4: Infineon Security Microcontrollers – IFX CCI 00007Dh – Armv8-M, 28 nm

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1110.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1110.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/0945_0945V2_0945V3.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/0945_0945V2_0945V3.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1079.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1079.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/0961_0961V2_0961V3_0961V4_0961V5_0961V6.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/0961_0961V2_0961V3_0961V4_0961V5_0961V6.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/0961_0961V2_0961V3_0961V4_0961V5_0961V6.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1025.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1025.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1102.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1102.html
https://www.trustcb.com/download/nscib-cc-2200060-01-cr/
https://www.trustcb.com/download/nscib-cc-2200060-01-cr/
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2021/12/cc-21-0173264-cr3-1.0.pdf
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2021/12/cc-21-0173264-cr3-1.0.pdf
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1113.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1113.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1178_1178V2_1178V3.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1178_1178V2_1178V3.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1179_1179V2_1179V3.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1179_1179V2_1179V3.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1229.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/SmartCards_IC_Cryptolib/1229.html

	Introduction
	Context
	FIDO Hardware Tokens
	Infineon SLE78
	Feitian A22 JavaCard

	Elliptic Curve Digital Signature Algorithm
	ECDSA Signature Scheme
	ECDSA Signature Verification Scheme

	Side-Channel Setup and First Observations
	Side-Channel Setup
	YubiKey 5Ci
	Feitian A22 JavaCard
	Focus on the Nonce Modular Inversion


	Reverse-Engineering of the Modular Inversion
	ECDSA Signature Traces
	Acquisition Campaign
	Side-Channel Analysis
	First Hypothesis: Extended Euclidean Algorithm

	ECDSA Signature Verification Traces
	Acquisition Campaign
	Side-Channel Analysis
	A Timing Leakage

	Reverse-Engineering of the Modular Inversion Countermeasure
	Hypothesis
	Brute-force Experiments

	Conclusions

	Input-Recovery Attack on the Extended Euclidean Algorithm
	First Observations
	Building a Generic Attack Algorithm
	Simulation Experiments
	Conclusions

	Full Reverse-Engineering of Infineon EEA
	More Timing Leakages
	A Deep Dive into Euclidean Division Algorithms
	First Steps
	Failed Attempts
	Perseverance is the Key
	Infineon Euclidean Division Algorithm

	Summary of the Timing Leakages

	Key-Recovery Attack on ECDSA
	Input-Recovery Attack on the EEA
	Simulation Experiments

	From Blinded Nonce to ECDSA Long Term Private Key
	Application to Feitian A22 JavaCard
	Leakage Extraction
	Attack Results

	Application to YubiKey 5Ci
	Side-Channel Acquisitions
	Leakage Extraction
	Attack Results

	Conclusions

	Beyond SLE78
	Infineon Security Microcontrollers
	Infineon Optiga Trust M
	Side-Channel Acquisitions
	Leakage Observation

	Infineon Optiga TPM
	Side-Channel Acquisitions


	Conclusions
	Impact on Infineon Security Microcontrollers
	Confirmed Vulnerable End-User Products
	YubiKey 5 Series
	Feitian A22 JavaCard
	Infineon TPMs

	Potentially Vulnerable Products
	Attack Mitigations
	Hardening the Infineon Cryptographic Library
	High-Level Mitigations

	Avenues of Research
	Project Timeline
	Acknowledgements

	YubiKey 5C Case Opening
	Infineon Security Microcontrollers

