

HOW TO SMASH THE SMAESH CHES CHALLENGE? BEING HONEST OR EVIL...

Valence Cristiani | Ches 2023
NinjaLab

BEING AN HONEST GUY

$Z=K \oplus P \longrightarrow$

Sbox
$S[K \oplus P]$

BEING AN HONEST GUY

$\mathrm{T} 1=\mathrm{U} 0+\mathrm{U} 3$
$\mathrm{~T} 2=\mathrm{U} 0+\mathrm{U} 5$
$\mathrm{~T} 3=\mathrm{U} 0+\mathrm{U} 6$
$\mathrm{~T} 4=\mathrm{U} 3+\mathrm{U} 5$
$\mathrm{~T} 5=\mathrm{U} 4+\mathrm{U} 6$
$\mathrm{~T} 6=\mathrm{T} 1+\mathrm{T} 5$
$\mathrm{~T} 7=\mathrm{U} 1+\mathrm{U} 2$

$|$| $\mathrm{T} 8=\mathrm{U} 7+\mathrm{T} 6$ |
| :--- |
| $\mathrm{~T} 9=\mathrm{U}+\mathrm{T} 7$ |
| $\mathrm{~T} 10=\mathrm{T} 6+\mathrm{T} 7$ |
| $\mathrm{~T} 11=\mathrm{U} 1+\mathrm{U} 5$ |
| $\mathrm{~T} 12=\mathrm{U} 2+\mathrm{U} 5$ |
| $\mathrm{~T} 13=\mathrm{T} 3+\mathrm{T} 4$ |
| $\mathrm{~T} 14=\mathrm{T} 6+\mathrm{T} 11$ |

$\mathrm{T} 15=\mathrm{T} 5+\mathrm{T} 11$
$\mathrm{~T} 16=\mathrm{T} 5+\mathrm{T} 12$
$\mathrm{~T} 17=\mathrm{T} 9+\mathrm{T} 16$
$\mathrm{~T} 18=\mathrm{U} 3+\mathrm{U} 7$
$\mathrm{~T} 19=\mathrm{T} 7+\mathrm{T} 18$
$\mathrm{~T} 20=\mathrm{T} 1+\mathrm{T} 19$
$\mathrm{~T} 21=\mathrm{U} 6+\mathrm{U} 7$

$|$| $\mathrm{T} 22=\mathrm{T} 7+\mathrm{T} 21$ |
| :--- |
| $\mathrm{~T} 23=\mathrm{T} 2+\mathrm{T} 22$ |
| $\mathrm{~T} 24=\mathrm{T} 2+\mathrm{T} 10$ |
| $\mathrm{~T} 25=\mathrm{T} 20+\mathrm{T} 17$ |
| $\mathrm{~T} 26=\mathrm{T} 3+\mathrm{T} 16$ |
| $\mathrm{~T} 27=\mathrm{T} 1+\mathrm{T} 12$ |

Figure 5: Top linear transform in forward direction.
$\mathrm{T} 23=\mathrm{U}+\mathrm{U} 3$
$\mathrm{~T} 22=\mathrm{U} 1 \# \mathrm{U} 3$
$\mathrm{~T} 2=\mathrm{U} 0 \# \mathrm{U} 1$
$\mathrm{~T} 1=\mathrm{U} 3+\mathrm{U} 4$
$\mathrm{~T} 24=\mathrm{U} 4 \# \mathrm{U}$
$\mathrm{R} 5=\mathrm{U} 6+\mathrm{U} 7$
$\mathrm{~T} 8=\mathrm{U} 1 \# \mathrm{~T} 23$

$$
Z=K \oplus P
$$

$\mathrm{T} 19=\mathrm{T} 22+\mathrm{R} 5$	$\mathrm{~T} 17=\mathrm{U} 2$ \# T19	$\mathrm{T} 6=\mathrm{T} 22+\mathrm{R} 17$
$\mathrm{~T} 9=\mathrm{U} 7$ \# T1	$\mathrm{T} 20=\mathrm{T} 24+\mathrm{R} 13$	$\mathrm{~T} 16=\mathrm{R} 13+\mathrm{R} 19$
$\mathrm{~T} 10=\mathrm{T} 2+\mathrm{T} 24$	$\mathrm{~T} 4=\mathrm{U} 4+\mathrm{T} 8$	$\mathrm{~T} 27=\mathrm{T} 1+\mathrm{R} 18$
$\mathrm{~T} 13=\mathrm{T} 2+\mathrm{R} 5$	$\mathrm{R} 17=\mathrm{U} 2$ \# U5	$\mathrm{T} 15=\mathrm{T} 10+\mathrm{T} 27$
$\mathrm{~T} 3=\mathrm{T} 1+\mathrm{R} 5$	$\mathrm{R} 18=\mathrm{U} 5$ \# U6	$\mathrm{T} 14=\mathrm{T} 10+\mathrm{R} 18$
$\mathrm{~T} 25=\mathrm{U} 2$ \# T1	$\mathrm{R} 19=\mathrm{U} 2$ \# U4	$\mathrm{T} 26=\mathrm{T} 3+\mathrm{T} 16$
$\mathrm{R} 13=\mathrm{U} 1+\mathrm{U} 6$	$\mathrm{Y} 5=\mathrm{U} 0+\mathrm{R} 17$	

Figure 6: Top linear transform in reverse direction.
$\mathrm{M} 1=\mathrm{T} 13 \times \mathrm{T} 6$
$\mathrm{M} 2=\mathrm{T} 23 \times \mathrm{T} 8$ $\mathrm{M} 3=\mathrm{T} 14+\mathrm{M} 1$
M4 $=\mathrm{T} 19 \times \mathrm{D}$
M5 = M4 + M1
M6 $=\mathrm{T} 3 \times \mathrm{T} 16$
$\mathrm{M} 7=\mathrm{T} 22 \times \mathrm{T} 9$
$\mathrm{M} 8=\mathrm{T} 26+\mathrm{M} 6$
M9 = T20 x T17
$M 10=M 9+M 6$
M11 $=\mathrm{T} 1 \times \mathrm{T} 15$ $\mathrm{M} 12=\mathrm{T} 4 \times \mathrm{T} 27$ M13 $=$ M12 + M11 $\mathrm{M} 14=\mathrm{T} 2 \times \mathrm{T} 10$ M15 = M14 + M11 M16 = M3 + M2
M17 $=$ M5 + T24
M18 $=$ M8 + M7
M19 $=M 10+M 15$
M20 $=$ M16 + M13
M21 $=$ M17 + M15
M22 $=$ M18 + M13
M23 $=$ M19 + T25
M24 $=$ M22 + M23
M25 $=$ M22 x M20
M26 $=$ M21 + M25
M27

M18 $=$ M8 + M7 $\mathrm{M} 19=\mathrm{M} 10+\mathrm{M} 15$ $\mathrm{M} 20=\mathrm{M} 16+\mathrm{M} 13$ $M 21=M 17+M 15$ M22 $=$ M18 + M13 $\mathrm{M} 23=\mathrm{M} 19+\mathrm{T} 25$ $M 24=M 22+M 23$ M25 $=$ M22 x M20
M26 $\mathrm{M} 27=\mathrm{M} 20+\mathrm{M} 21$ M28 = M23 + M25 M29 = M28 x M27 M30 $=$ M26 x M24 M32 $=$ M27 \times M31

M33 $=$ M27 + M25	$\mathrm{M} 49 \mathrm{M} 43 \times \mathrm{T} 16$
M34 $=$ M21 x M22	M50 $=$ M38 x T9
M35 $=$ M24 x M34	M51 $=$ M37 \times T17
M36 = M24 + M25	M52 $=$ M42 \times T15
M37 $=$ M21 + M29	M53 $=$ M45 \times T27
M38 $=$ M32 + M33	M54 $=$ M41 x T10
M39 $=$ M23 + M30	M55 $=$ M44 \times T13
$\mathrm{M} 40=\mathrm{M} 35+\mathrm{M} 36$	M56 $=$ M40 \times T23
M41 = M38 + M40	M57 = M39 x T19
M42 $=$ M37 + M39	M58 $=$ M43 \times T3
M43 $=$ M37 + M38	M59 $=$ M38 \times T22
M44 $=$ M39 + M40	M60 $=$ M37 \times T20
M45 $=$ M42 + M41	$\mathrm{M} 61=\mathrm{M} 42 \times \mathrm{T} 1$
$\mathrm{M} 46=\mathrm{M} 44 \times \mathrm{T} 6$	$\mathrm{M62}=\mathrm{M} 45 \times \mathrm{T} 4$
M47 $=$ M40 \times T8	$\mathrm{M63}=\mathrm{M} 41 \times \mathrm{T} 2$

M49 $=$ M43 \times T16 M50 $=$ M38 x T9 M51 $=$ M37 \times T17 M52 $=$ M42 \times T15 M53 $=$ M45 x 127 M54 $=$ M41 x T10 M55 $=$ M44 \times T13 6 = M40 x T23 $7=$ M39 x T19 M58 $=$ M43 x T3 M60 = M38 x M61 = M42 \times T1 M62 $=$ M45 x T4 M63 $=$ M41 \times T2

Sbox tower fileds implementation

BEING AN HONEST GUY

Apply belief propagation algorithm
(SASCA) and recover the key

BEING AN HONEST GUY

BEING AN HONEST GUY

But it...

$>$ Requires to understand a lot of theory (graphs, BP algorithm, dealing with the loops etc...)
$>$ Is very long
> Does not even guarantee to win

BEING AN HONEST GUY

But it...

$>$ Requires to understand a lot of theory (graphs, BP algorithm, dealing with the loops etc...)
> Is very long
> Does not even guarantee to win

BEING A BAD GUY

Let's use another side-channel ? Power leakage is so old shcool...

Aggregating many well-crafted submissions may
allow to extract enough information on the key
:---
enough !

BEING AN BAD GUY

How many submissions?

> Uniform probability for all bytes except one
> Return a different score for each of the 256 values
Obfuscate this
behind a neural with a uniform spacing (ex: 1, $2 \ldots$, 256) network...
> Upload the submission and store the $\log _{2}($ KeyRank $)$

BEING A BAD GUY

Read it backwards...

I created a new account named Sec-artorez

Hawai	A7_d2	200000	\mathbf{X}	128.0
Everest	A7_d2	210000	\mathbf{X}	126.7
Dubai	A7_d2	220000	\mathbf{X}	123.8
Inazawa	A7_d2	225000	\mathbf{X}	127.7
Bahamas	A7_d2	215000	\mathbf{X}	127.8
Zanzibar	A7_d2	200000	\mathbf{X}	127.0
Antarctica	A7_d2	180000	\mathbf{X}	127.3
Capri	A7_d2	205000	\mathbf{X}	128.0
Faliraki	A7_d2	220000	\mathbf{X}	125.2
Gaios	A7_d2	180000	\mathbf{X}	127.9
Jakarta	A7_d2	189000	\mathbf{X}	125.0
Kuala Lumpur	A7_d2	230000	\mathbf{X}	123.3

$>$ First letter is a reminder for the concerned byte
$>$ Space the submission by ~ 2 days...

Local analysis reveals that the we gained 66.1 bits. Means that we should have :
$\log _{2}($ KeyRank $)=61.9$
$>$ Aggregate the results and mount the final attack.

BEING A BAD GUY

Number of traces

The SMAesH challenge has been SMASHED

